
www.manaraa.com

Type Systems for Distributed Data Stru
tures �Ben Liblitliblit�
s.berkeley.edu Alexander Aikenaiken�
s.berkeley.eduDepartment of Ele
tri
al Engineering and Computer S
ien
eUniversity of California, BerkeleyBerkeley, CA 94720-1776Abstra
tDistributed-memory programs are often written using aglobal address spa
e: any pro
ess
an name any memorylo
ation on any pro
essor. Some languages
ompletely hidethe distin
tion between lo
al and remote memory, simpli-fying the programming model at some performan
e
ost.Other languages give the programmer more expli
it
ontrol,o�ering better potential performan
e but sa
ri�
ing bothsoundness and ease of use.Through a series of progressively ri
her type systems,we formalize the
omplex issues surrounding sound
ompu-tation with expli
itly distributed data stru
tures. We thenillustrate how type inferen
e
an subsume mu
h of this
om-plexity, letting programmers work at whatever level of detailis needed. Experiments
ondu
ted with the Titanium pro-gramming language show that this
an result in easier de-velopment and signi�
ant performan
e improvements overmanual optimization of lo
al and global memory.1 Introdu
tionWhile there have been many e�orts to design distributed,parallel programming languages, none has been
ompletelysatisfa
tory. Many approa
hes present the illusion of a sin-gle shared, global address spa
e. While easy for program-mers to understand, this approa
h hides the real stru
tureof memory, making it diÆ
ult to exploit lo
ality of data. In
omplex appli
ations where lo
al memory a

esses may beorders of magnitude faster than remote a

esses, this
anseriously harm performan
e, development time, or both.Another approa
h is to reveal the full distributed mem-ory hierar
hy at the language level. A popular model is toallow a mixture of global and lo
al pointers: the former spanthe entire global address spa
e, while the latter only addressmemory that is physi
ally
olo
ated with a given pro
es-sor. This supports globally shared data stru
tures while stillallowing eÆ
ient implementation of algorithms spe
i�
allystru
tured for distributed parallel exe
ution [4{7, 10, 17, etal ℄.�This resear
h was supported in part by NASA Contra
t No.NAG2-1210 and an NDSEG fellowship.To appear in POPL '00.

Histori
ally, programming languages that expose muta-ble lo
al and global addresses have been unsound. Designinga sound type system whi
h allows lo
al and global pointersturns out to be a subtle problem. Exposing lo
al/global alsopla
es an additional burden on the programmer, who maybe for
ed to attend to the details of memory layout even inse
tions of
ode that are not performan
e
riti
al.This paper makes three prin
ipal
ontributions:� Through a progression of sound type systems, we illus-trate and
larify the semanti
 issues surrounding lo
aland global pointers.� We present a type inferen
e system that is
apable of
ompleting a program with inferred lo
al/global anno-tations, thereby relieving the programmer from man-aging address spa
es in mu
h or all of the
ode.� We present experimental results showing that this in-feren
e algorithm improves program performan
e sig-ni�
antly, simpli�es development, and does a better jobthan hand-optimization by humans.The remainder of this paper is stru
tured as follows.Se
tion 2 o�ers a primer on the
ommon terminology withwhi
h we dis
uss distributed address spa
es and highlightssome of the performan
e
osts of simpler models that treatdistributed memory as though it were shared memory. InSe
tion 3 we develop a series of small languages and typesystems that
odify sound
omputing with distributed mu-table data stru
tures. The more expressive systems are alsomore
omplex; Se
tion 4 shows how type inferen
e
an sim-plify programming while retaining the full power of the typesystem. We have applied these prin
iples to the Titaniumprogramming language, and report the results of our exper-iments in Se
tion 5. Se
tion 6 reviews related work. We
on
lude in Se
tion 7 by summarizing our �ndings, and dis-
ussing dire
tions for future resear
h.2 Ba
kgroundWhen des
ribing inter
onne
tions between allo
ated blo
ksof data, we use the term pointer, whi
h reinfor
es the ideathat we are dis
ussing very low level operations. Althoughpointers
an implement Standard ML ref's [22℄ or Java ref-eren
es [16℄, pointers are more primitive.Our distributed memory model is an expli
it two-levelhierar
hy with lo
al and global memory. Lo
al memory isphysi
ally
olo
ated with a pro
essor. A system with six-teen pro
essors has sixteen distin
t lo
al memories. A lo
al1

www.manaraa.com

if (p.pro
essor == MyPro
essor)result = *p.address;elseresult = RemoteRead(p.pro
essor, p.address);Figure 1: Dereferen
ing a global pointer. Be
ause\result" may re
eive its value from an opaque fun
tion
all,the
ompiler is unlikely to be able to e�e
tively optimize any
ode that uses the resulting value.CM-5 T3Dfun
tion 2.8 �se
/edge 1.19inline 2.0 0.71optimized 1.3 0.66narrow 1.15 N/ATable 1: Costs of global pointers to lo
al data. \Fun
-tion" uses global pointers and requires a fun
tion
all forevery read or write. \Inline" inlines global pointer
ode di-re
tly at the point of use. \Optimized" uses extensive manualoptimization and likely represents the theoreti
al best perfor-man
e possible for global referen
es. \Narrow" uses simplepointers, and represents a level of performan
e only possiblewith true, physi
ally shared memory.pointer en
odes an address within one lo
al memory and
orresponds to a pointer or memory address in standardlanguages. Lo
al pointers do not travel well; a lo
al addressformed on one pro
essor is meaningless elsewhere.Global memory is the union of all lo
al memories. Ifwe assume that pro
essors are uniquely numbered, then aglobal pointer en
odes a pair hpro
essor; addressi, with ahome pro
essor and an address within that pro
essor's lo-
al memory. Global pointers have a di�erent representationfrom lo
al pointers and are more
ostly to use. Manipulatingremote memory may involve spe
ial ma
hine instru
tions,trapping into the operating system, or fun
tion
alls into amessage-passing library. The exa
t me
hanism is irrelevant.What matters is that global and lo
al pointers have di�erentrepresentations and are manipulated using di�erent opera-tions.While dereferen
ing a global pointer to another pro
es-sor's memory
an be extremely slow, even a global pointerinto lo
al memory generally in
urs a performan
e penalty.As Figure 1 illustrates, dereferen
ing a global pointer thatturns out to be lo
al may entail
omparing two values, ig-noring a bran
h to the remote fet
h
lause, dereferen
ingthe lo
al address, and bran
hing to the end of the entire
onditional. The presen
e of a bran
h,
ombined with thepossibility of a fun
tion
all, may make it diÆ
ult for anoptimizing
ompiler to improve
ode using the result of astati
ally global dereferen
e.Ben
hmarking quanti�es these
on
erns. A Split-C [13℄ben
hmark was run using various strategies to implementglobal pointers. The ben
hmark, EM3D, repeatedly walksa
ross an irregular bipartite graph performing a simple
al-
ulation. We
an estimate the
ost of global pointers to lo
aldata by
omputing the average time required per edge whenall data is stored lo
ally. Table 1 shows times
olle
ted ona Thinking Ma
hines CM-5 and partial times
olle
ted on aCray T3D. These �ndings were originally presented in [21℄and [26℄, respe
tively.The ben
hmark reveals that the performan
e
ost of us-ing global pointers for lo
al data is signi�
ant. Even when

the
ode for reading and writing through global pointers ref-eren
es is inlined, the CM-5 shows nearly a 75% slowdown
ompared with simple pointers. This is largely due to lostopportunities for optimization. Extensive manual optimiza-tion in
luded relo
ating
ode into the \lo
al"
lause of thelo
ality test to avoid a bran
h. Su
h heroi
 e�orts bring per-forman
e to within 13% of simple pointers; the di�eren
e isprobably due to less e�e
tive register use and the in
reasedtime to move larger amounts of data around in memory.Thus, high performan
e parallel
ode must a
knowledgethe distributed nature of memory. Where data stru
turesgenuinely span pro
essor boundaries, global pointers are en-tirely appropriate. But when stati
 information
an provethat data is always lo
al, global pointers are needlessly
ostly.3 A Progression of Type SystemsWe present a suite of three languages and type systemsthat o�er both global and lo
al pointers, illustrating the keysoundness issues that arise when manipulating distributeddata stru
tures. All three systems have been redu
ed to es-sentials to more
learly illuminate the novel issues. Theseare not languages in whi
h one would program dire
tly.Rather, these languages should be
onsidered as just barelyabove the level of primitive ma
hine addressing.Our foremost
on
ern is distributed data, not mobile
ode. Therefore, none of the languages we des
ribe
ontains� expressions, let bindings or any other fa
ility for introdu
-ing new fun
tions, variables, or
losures. Rather, we assumea �xed set of named fun
tions and variables available in aninitial environment. Fun
tions are not �rst-
lass; fun
tiontypes are not data types, and fun
tion names only appeardire
tly applied to arguments. In Se
tion 7 we brie
y
on-sider extensions allowing �rst-
lass fun
tions; for now, wefo
us on data.Similarly, we omit the details of a parallel semanti
s. Asingle language
onstru
t, the unary transmission operator,represents an expli
it transfer of information from one pro-
essor to another. An expression of the form \transmit e"should be read as evaluating expression \e" on one pro
es-sor, then transmitting the result to a di�erent pro
essor.The result of a transmit expression is the value as seen onthe re
eiving pro
essor. This is the only expli
it
ommu-ni
ation primitive; all other data is ex
hanged impli
itly,via global pointers. The presentation here is deliberatelysomewhat informal. An operational semanti
s and sound-ness proof for the most
omplex type system are presentedin the appendix.The �rst language
ontains lo
al and global pointers witharbitrary levels of indire
tion but without updates. The se
-ond language introdu
es an assignment operator for destru
-tive updates. The third language adds pairs with updatable�elds, whi
h model the
omposite re
ords, obje
ts, or datastru
tures of higher level languages.3.1 System I: Simple PointersOur �rst language
ontains integers, lo
al and global point-ers, and basi
 pointer operations. It has neither destru
-tive assignment nor
ompound data types; these are addedin se
tions 3.2 and 3.3, respe
tively. Expression and typegrammars are given in Figure 2. Figure 3 gives type
he
k-ing rules. A type environment, A, en
apsulates informationabout externally de�ned variable and fun
tion names.2

www.manaraa.com

J ::= integer literalse ::= J j x j f e j " e j # e j widen e j transmit e� ::= int j boxed ! �! ::= lo
al j globalFigure 2: Expressions and types I. Expressions are givenby e, while � represents expression types.

A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed lo
al �A ` e : boxed lo
al �A ` # e : �A ` e : boxed global �A ` # e : expand(�)A ` e : boxed lo
al �A ` widen e : boxed global �A ` e : �A ` transmit e : expand(�)Figure 3: Type
he
king rules I.

pro
essor 0 pro
essor 1x '/ " 5
��#x '/ 5Figure 4: Situation requiring type expansion.To dis
uss pointers and pointer operations, we work withboxed and unboxed values. As is standard, types representunboxed values unless expli
itly boxed. One may take avalue's address using the \"" indire
tion operator, so while\5" is a pattern of bits representing �ve, \" 5" is a lo
alpointer to a memory lo
ation holding the value �ve. Weuse \boxed" to des
ribe pointer types, augmented with awidth quali�er to distinguish global from lo
al pointers. The\widen" operator widens a lo
al pointer to global. Hen
e:5 : int" 5 : boxed lo
al int" " 5 : boxed lo
al boxed lo
al intwiden " " 5 : boxed global boxed lo
al intThe \#" dereferen
ing operator retrieves the value ad-dressed by a pointer. Dereferen
ing a lo
al pointer works asexpe
ted, essentially stripping o� an outer level of boxing.Dereferen
ing a global pointer is more subtle.3.1.1 Impli
it Type ExpansionThe diÆ
ulty with global pointer dereferen
ing is illustratedin Figure 4. Dotted lines mark lo
al memory boundaries; inthis
ase, we have two pro
essors and therefore two lo
almemories. Pro
essor 1 has
onstru
ted a lo
al pointer toa memory lo
ation storing the value �ve. We indi
ate lo
alpointers using a single arrow. Pro
essor 0 has a variable x oftype boxed global boxed lo
al int: a global pointer to alo
al pointer to an integer. We use double arrows to indi
ateglobal pointers. A na��ve dereferen
e of x would simply ex-tra
t the lo
al pointer value " 5. However, that lo
al pointeris meaningless in pro
essor 0's lo
al address spa
e. Rather,as the �gure suggests, the lo
al pointer addressed by x mustbe widened, so that # x is global as well. The new globalpointer's home pro
essor is 1, while its address on pro
essor1 is the same as the address expressed by " 5.Widening is only needed when an operation
ould
ausethe value of a lo
al pointer to
ross pro
essor boundaries.Thus, if y : boxed global int is a global pointer to an inte-ger, then # y : int is the value of that integer. Similarly, ifz : boxed global boxed global int is a global pointer to aglobal pointer to an integer, then # z : boxed global intwould traverse one level of indire
tion, yielding a globalpointer to an integer. Widening is required when transmit-ting a lo
al pointer: if " 5 has type boxed lo
al int, thentransmit " 5 must have type boxed global int, or else there
eiving pro
essor would be left holding a lo
al pointer intothe wrong address spa
e. But transmit 5 requires no spe
ialmanipulation, be
ause integers travel safely a
ross pro
essorboundaries.3

www.manaraa.com

expand(boxed lo
al �) , boxed global �expand(�) , � otherwiseFigure 5: Type manipulating fun
tions I.J ::= integer literalse ::= J j x j f e j " e j # e j widen e j transmit e je ; e j e := e� ::= int j boxed ! �! ::= lo
al j globalFigure 6: Expressions and types II. Relative to Figure 2,expressions now allow sequen
ing (;) and assignment (:=).The expand fun
tion, used in the �nal two type rules,is given in Figure 5. It widens lo
al pointers to global, butleaves other types un
hanged. Simple though this may seem,real parallel programming languages do not ne
essarily getthis right. Split-C, for example, makes no e�ort to preventpro
essors from seeing ea
h other's lo
al pointers. In
aseslike Figure 4, the programmer is expe
ted to extra
t thepro
essor number from x and manually
ombine that withthe lo
al pointer at #x to produ
e a valid global pointer.Forgetting to do so eli
its no warning from the
ompiler;the program simply
ontains a wild pointer [12℄.3.2 System II: Assignable PointersWe now extend the language with destru
tive assignmentthrough pointers. An updated grammar appears in Figure 6.To help support assignment we have also added sequen
ing.Given a pointer to some memory lo
ation and a
ompat-ible value, the new \:=" assignment operator writes a newvalue into the pointed-to lo
ation, repla
ing what may havebeen stored there before. The pointer itself is un
hanged; itmerely identi�es the target of the store operation. This is amore primitive operation than, for example, assignment toan ML ref, although ML assignment
ould be implementedusing our primitive plus an extra level of indire
tion. Thekey point is that the left hand side of an assignment mustalways be a pointer, and that the new value is pla
ed in thelo
ation to whi
h the pointer refers.3.2.1 Type Expansion Versus AssignmentType
he
king rules for the augmented language are givenin Figure 7. As before, the interesting
ase is a globalpointer to lo
al pointer, su
h as x in Figure 8. Suppose thatglobal pointer x is to re
eive an assignment, via \x := " 6".The types seem, super�
ially, to mat
h: x addresses a lo
alpointer to int, and " 6 is also a lo
al pointer to int. Yetthat lo
al pointer would be meaningless if transported frompro
essor 0 a
ross to pro
essor 1. Widening " 6 to globalis no solution either, be
ause the box to whi
h x points istyped as lo
al.In general, then, we must forbid assignment to lo
alpointers a
ross globals. The lo
al pointer value
an be read,

A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed lo
al �A ` e : boxed lo
al �A ` # e : �A ` e : boxed global �A ` # e : expand(�)A ` e : boxed lo
al �A ` widen e : boxed global �A ` e : �A ` transmit e : expand(�). .A ` e : � A ` e0 : � 0A ` e ; e0 : � 0A ` e : boxed lo
al � A ` e0 : �A ` e := e0 : �A ` e : boxed global �A ` e0 : � robust(�)A ` e := e0 : �Figure 7: Type
he
king rules II. Rules above the dottedline are identi
al to those in Figure 3, while those below theline are new. pro
essor 0 pro
essor 1x '/ " 5
��

bad o

o

o

wwo
o

o6 5Figure 8: Situation pre
luding assignment.4

www.manaraa.com

expand(boxed lo
al �) , boxed global �expand(�) , � otherwiserobust(boxed lo
al �) , falserobust(�) , true otherwiseFigure 9: Type manipulating fun
tions II. The expandfun
tion is un
hanged from Figure 5. The robust predi
ateis new.J ::= integer literalse ::= J j x j f e j " e j # e j widen e j transmit e je ; e j e := e j he; ei j �1 e j �2 e� ::= int j boxed ! � � j h�; �i! ::= lo
al j global� ::= valid j invalid� � � valid � invalid � � �boxed ! � � � boxed ! �0 � () � � �0h�1; �2i � h� 01; � 02i () �1 � � 01 ^ �2 � � 02Figure 10: Expressions and types III. Relative to Fig-ure 6, expressions now allow pair
reation (h ; i) and sele
-tion (�n). Types in
lude pairs, and the pointer types now
arry an additional validity quali�er �. A subtyping relationhas been added.subje
t to expansion as seen earlier. But it
an never beupdated. The
ore issue is that lo
al pointers
annot travela
ross pro
essor boundaries, and global pointers use a dif-ferent and in
ompatible representation. Figure 9 gives therobust predi
ate that enfor
es these restri
tions. A robusttype is one that
an safely travel a
ross a global pointerduring an assignment. Note that assignment a
ross lo
alpointers requires no su
h test, as it is always safe providingthe sour
e and destination types mat
h.3.3 System III: Assignable TuplesLastly, we enri
h the language with tuples. For simpli
ity,we only permit pairs; general n-tuples
ontribute nothingnovel. The language, type grammars, and subtyping rulesappear in Figure 10. We have added a pair
onstru
tor h ; i,plus two new operators for de
omposing pairs.Given a valid pointer to a pair, the �1 and �2 pair sele
-tion operators produ
e o�set pointers to the �rst and se
-ond
omponents of the pair. Again, this is more primitivethan the #n re
ord sele
tion operator from ML, and the twoshould not be
onfused. Assuming that ML re
ords are al-ways boxed, ML re
ord sele
tion roughly
orresponds to pairsele
tion followed by dereferen
e (# �n). Primitive pair se-le
tion alone, without dereferen
e, forms a pointer suitablefor assignment, permitting in-pla
e mutation of one
om-

ponent of a pair while leaving the other un
hanged. Theneed for these atypi
al operators will be
ome more evidentin Se
tion 3.3.2.The subtyping relation allows one to weaken pointertypes by promoting
ertain � quali�ers from valid toinvalid. This quali�er subsumption is allowed at the toplevel or embedded anywhere within a top level pair. How-ever, one
annot
hange validity quali�ers below a pointer.If this were permitted, then it would be possible for twopointers with di�erent types to alias the same value, whi
h isunsound in the presen
e of assignment. No impli
it
hangesto the ! quali�er are permitted at all, be
ause this entailsa
hange of representation, and therefore should logi
allyprodu
e a new value.3.3.1 Consistent Representation of PairsAs we have seen, when an isolated lo
al pointer moves a
rosspro
essor boundaries, it must be expanded into a globalpointer. What about moving an unboxed pair
ontaininga lo
al pointer? One option would be to expand the embed-ded pointer as before. Thus, expand(hboxed lo
al �; inti)
ould be de�ned as hboxed global � ; inti. However, thismeans that the expanded pair would have a di�erent rep-resentation than the original pair. This approa
h is veryunattra
tive in any language with named re
ord types (i.e.,almost all languages). Suppose the programmer de
laresEntry as a pair hboxed lo
al � ; inti for some � . Whatname would we use for the expanded pair? Entry is inap-propriate, sin
e the type has
hanged. Do we synthesize anew name? Assume that the value belongs to some anony-mous re
ord type? Any fun
tions that manipulate unboxedEntry values
annot properly use the expanded pair, be
auseits representation (and possibly size and
omponent o�sets)will have
hanged. Treating Entry as polymorphi
 in its !quali�ers would entail either generating multiple
opies of
ode, or else inserting runtime tests wherever polymorphi
pointers are used. But
ode expansion is undesirable andruntime pointer tests are exa
tly what we wish to avoid.Thus, we wish to ensure that expand never
auses a pairto
hange representation. Lo
al pointers within pairs shouldremain lo
al, even when
opied between pro
essors. Su
hpointers no longer represent valid memory addresses andmust never subsequently be used. We add a new validityquali�er, �, to mark when an embedded lo
al pointer hasbeen invalidated by movement between pro
essors. Thus,when an unboxed Entry is moved a
ross pro
essor bound-aries, its embedded lo
al pointer is marked as invalid. Butthe se
ond
omponent of the tuple, an embedded integer,remains a

essible. An embedded global pointer would like-wise arrive uns
athed. Any existing fun
tion that manipu-lates unboxed Entry values
ould still be used, provided thatit only a

esses the integer, and never tou
hes the (now in-valid) lo
al pointer.Figure 11 presents our �nal set of type
he
king rules.The updated expand and restru
t fun
tions in Figure 12
omplete the pi
ture. A new fun
tion, pop, is responsiblefor traversing pairs and invalidating any embedded lo
alpointers. The robust predi
ate, whi
h forbids unsound as-signments a
ross global pointers, has been relaxed slightly.Cross-global assignments to valid lo
al pointers are forbid-den. But
ross-global assignments to invalid lo
al pointersare allowed: if a lo
al pointer is already invalid on the re
eiv-ing end, one
an
ertainly repla
e it with a di�erent invalidlo
al pointer. The robust and pop fun
tions have an impor-5

www.manaraa.com

A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed lo
al valid �A ` e : boxed lo
al valid �A ` # e : �A ` e : boxed global valid �A ` # e : expand(�)A ` e : �A ` transmit e : expand(�)A ` e : � A ` e0 : � 0A ` e ; e0 : � 0A ` e : boxed lo
al valid � A ` e0 : �A ` e := e0 : �A ` e : boxed global valid �A ` e0 : � robust(�)A ` e := e0 : �. .A ` e1 : �1 A ` e2 : �2A ` he1; e2i : h�1; �2iA ` e : boxed ! valid h�1; �2iA ` �n e : boxed ! valid �nA ` e : � � � � 0A ` e : � 0Figure 11: Type
he
king rules III. Rules above the dot-ted line are identi
al to those in Figure 7, or have been
hanged trivially to support the � quali�er. Rules below theline are new.

expand(boxed lo
al � �) , boxed global � �expand(h�1; �2i) , hpop(�1); pop(�2)iexpand(�) , � otherwisepop(boxed lo
al � �) , boxed lo
al invalid �pop(h�1; �2i) , hpop(�1); pop(�2)ipop(�) , � otherwiserobust(boxed lo
al valid �) , falserobust(h�1; �2i) , robust(�1) ^ robust(�2)robust(�) , true otherwiseFigure 12: Type manipulating fun
tions III.tant relationship: robust(�) is true if and only if pop(�) = � .Intuitively, a value
an be assigned a
ross a global pointerif and only if it will not be damaged in transit.3.3.2 Sele
tion Without Dereferen
eWe
an now demonstrate why it is important to have pair se-le
tion operators that do not also immediately dereferen
e.Suppose that we are given a global pointer to h4; hx; 5ii,where x is some embedded lo
al pointer. We wish to ex-tra
t x. If sele
tion is always
oupled with dereferen
e, thensele
ting the se
ond
omponent of the pair would produ
ethe unboxed value hx; 5i. There is no global pointer asso-
iated with this value; we have
arried the lo
al pointer xa
ross pro
essors, and
an no longer safely use it. Therefore,the expand and pop fun
tions will have
orre
tly marked xas invalid.However, if sele
tion and dereferen
ing are distin
t oper-ations, we
an do better. Given a global pointer to h4; hx; 5ii,sele
ting the se
ond
omponent will produ
e a global pointerto hx; 5i. Sele
ting the �rst
omponent of this yields a globalpointer to x. We already know how to use global pointersto lo
al pointers: dereferen
ing yields a valid global pointerequivalent to widen x.Thus, we �nd that a sequen
e of sele
tion operationsmust not dereferen
e too early. Sele
tion should be treatedas simple pointer displa
ement. When extra
ting a valuedeeply embedded in nested pairs, all sele
tion displa
ementsmust be applied �rst, and only then should the �nal o�setpointer be dereferen
ed.4 From Che
king to Inferen
eThe third system provides address spa
e management, safepointers, and updatable tuples. This forms a suitable start-ing point for the design of a realisti
 language for manip-ulating distributed mutable data stru
tures. However, itis impra
ti
al to expe
t programmers to systemati
ally an-notate programs with lo
al/global/valid/invalid typequali�ers; it is simply too
umbersome and time
onsuming(see Se
tion 5.1).Fortunately, the type quali�ers we have des
ribed arequite amenable to automati
 inferen
e. Figure 13 shows a6

www.manaraa.com

A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed lo
al valid �A ` e : boxed ! valid � expand(!; �; � 0)A ` # e : � 0A ` e : � expand(global; �; � 0)A ` transmit e : � 0A ` e : � A ` e0 : � 0A ` e ; e0 : � 0A ` e : boxed ! valid �A ` e0 : � robust(!; �)A ` e := e0 : �A ` e1 : �1 A ` e2 : �2A ` he1; e2i : h�1; �2iA ` e : boxed ! � h�1; �2iA ` �n e : boxed ! � �n. .A ` e : boxed lo
al � �A ` e : boxed global � �Figure 13: Type inferen
e rules. Rules above the dottedline
orrespond dire
tly to type
he
king rules in Figure 11,while the rule below the line is new.

set of inferen
e rules dire
tly derived from the third typesystem. One new rule allows impli
it
oer
ion of pointersfrom lo
al to global. This is allowed at the top level only,both to keep pair types
onsistent as well as to avoid thewell-known soundness problems in allowing distin
t aliasesof mutable data to have di�erent types. For
larity of pre-sentation, the rules use several abbreviations:1. Constraints are not expli
itly propagated up fromsubexpressions; assume that the
omplete
onstraintset is the simple union of the sets of
onstraints in-du
ed by all subexpressions.2. A nontrivial rule hypothesis su
h ase : boxed ! valid �should be read as an equality
onstrainte : �0 �0 = boxed ! valid �3. All
onstraint variables are fresh.The inferen
e rules indu
e a set of
onstraints on un-known quali�ers; for example, the operand of any derefer-en
e operator is
onstrained to be quali�ed as valid. Fig-ure 14 shows supporting fun
tions that generate additional
onstraints. Type quali�er inferen
e requires �nding a solu-tion to the set of all
onstraints indu
ed by a program.Some
onstraints generated by the pop and robust fun
-tions have the following general form:!? = global =) (! = global _ � = invalid)These
onditional
onstraints arise whenever data
rosses a(possibly global) pointer. For example, when dereferen
inga pointer to a pair, if the pointer being dereferen
ed is global(!? = global), then either a pointer embedded in the pairmust also be global (! = global) or else it must be markedinvalid (� = invalid).In general, solving
onditional disjun
tive
onstraintsis redu
ible to satis�ability of boolean formulae in 3-
onjun
tive normal form, an NP-
omplete problem. How-ever, we
an exploit the parti
ular stru
ture of this inferen
eproblem to �nd a solution eÆ
iently.Our goal is to minimize the number of global point-ers. The
onditional disjun
tive
onstraints may leave uswith a
hoi
e between having a global valid pointer anda lo
al invalid one. If either would be
orre
t, we willalways prefer lo
al invalid. Of
ourse, if that pointer isrequired to be valid elsewhere, then lo
al invalid is notan option and we must
hoose global valid instead.The
onstraints have two important properties. First,the
onstraints on types
an indu
e
onstraints on quali�ers,but
onstraints on quali�ers do not introdu
e
onstraints ontypes. Thus, we
an resolve the type
onstraints to ob-tain the
omplete set of quali�er
onstraints. Se
ond, the
onditional quali�er
onstraints mention only global/lo
alquali�ers in the ante
edents. This observation suggests thefollowing pro
edure for sele
ting a best solution of the
on-straints:1. Expand the type
onstraints � = � 0 and � � � 0 toobtain the
omplete set of quali�er
onstraints.2. Solve the un
onditional equality and in
lusion
on-straints on � variables. Set any � variable not requiredto be valid to invalid. At this point all � variablesare resolved.7

www.manaraa.com

expand(!?; boxed ! � �; boxed !0 �0 � 0) , f!? � !0; ! � !0; � = �0; � = � 0gexpand(!?; h�1; �2i; h� 01; � 02i) , pop(!?; �1; � 01) [pop(!?; �2; � 02)expand(!?; �; � 0) , f� = � 0g otherwisepop(!?; boxed ! � �; boxed !0 �0 � 0) , f!? = global =) (! = global _ �0 = invalid); ! = !0; � = � 0gpop(!?; h�1; �2i; h� 01; � 02i) , pop(!?; �1; � 01) [pop(!?; �2; � 02)pop(!?; �; � 0) , f� = � 0g otherwiserobust(!?; boxed ! � �) , f!? = global =) (! = global _ � = invalid)grobust(!?; h�1; �2i) , robust(!?; �1) [robust(!?; �2)robust(!?; �) , ; otherwiseFigure 14: Constraint generating fun
tions.3. Remove
onditional
onstraints of the form !? =global =) (! = global _ invalid = invalid).These are always satis�ed.4. Repla
e
onditional
onstraints of the form !? =global =) (! = global _ valid = invalid) by!? � !.5. Resolve the
onditional and un
onditional
onstraintson ! variables. Set any ! variables not required tobe global to lo
al. Note that the
onditional
on-straints no longer mention � variables, so this step
an-not introdu
e an in
onsisten
y. It is easy to show thatthere is a unique solution minimizing the number of !variables resolved to global,
omputable in near lineartime [15, 25℄.6. Complete the program by adding a minimal set ofexpli
it widen operators wherever the new lo
al-to-global
oer
ion rule has been used. This is similar toHenglein's minimal
ompletions [18℄, but with neitherindu
ed
oer
ions nor proje
tions, and requiring only alinear-time pass a
ross the derivation tree.We note that setting all possible variables to global andvalid will always produ
e one legitimate solution to the
onstraints. Thus, languages that require all pointers to beglobal are safe, albeit overly
onservative.5 Experimental Implementation5.1 A Pra
ti
al Need for Sound Inferen
eTitanium is an experimental language for high-performan
eparallel
omputing. Titanium has the syntax and seman-ti
s of Java, although it
ompiles to native ma
hine
oderather than virtual ma
hine byte
odes. Titanium extendsJava with a global address spa
e, where pro
esses
an ad-dress, read, and write ea
h other's data [19℄.By default, all referen
es in a Titanium program are as-sumed to be global. This makes it easy to build simpleprograms that work. It is also a suitable
hoi
e for ar
hi-te
tures with true shared memory (SMP's), whi
h Titaniumalso supports. However, when tuning a program for speed,

programmers may sele
tively de
lare some referen
es as lo-
al (e.g. within inner loops). If the programmer knows thata large array is always lo
al, a lo
al de
laration
auses theTitanium
ompiler to produ
e more eÆ
ient
ode to traversethe lo
al array. The
ompiler
he
ks expli
it lo
al quali�ersstati
ally, using rules similar to those presented here. Forexample, if a method expe
ts a lo
al pointer as a parameter,passing it a global pointer is a simple type error [27℄.This design allows programmer to ignore lo
ality issuesuntil the
ode is running
orre
tly and then add lo
al qual-i�ers to speed things up. However, Titanium does not pro-vide quali�er inferen
e, and experien
e working with appli-
ation developers has shown that adding lo
al quali�ers byhand is not easy. Multidimensional arrays are bewildering;stati
 type errors are often reported far away from the siteof the o�ending de
laration; and the more aggressive oneis at adding lo
al quali�ers, the harder it is to maintain avalid program in the long run.Maintenan
e issues be
ome dominant when dealing withlega
y
ode. Titanium in
orporates a large portion of thestandard Java
lass library into its own runtime environ-ment. The
omplete
ontents of the java.io, java.lang,and java.util pa
kages are available in Titanium. The Ti-tanium
ompiler produ
es native
ode dire
tly from Sun'sJava sour
e
ode for these pa
kages. In
orporating the stan-dard Java libraries is very desirable: the libraries representan enormous amount of work that does not need to be re-peated.However, this large body of existing
ode was writtenfor Java, not Titanium. The three pa
kages
omprise six-teen thousand lines of sour
e
ode without lo
al quali�ers.None of this
ode uses Titanium's
ross-pro
essor
ommu-ni
ation; but in the absen
e of expli
it quali�ers, every vari-able, �eld, and method parameter defaults to a global ref-eren
e. Methods are assumed to return global referen
es,making it even more diÆ
ult for programmers to use lo
alreferen
es in their own
ode. Manually annotating this largebody of lega
y Java
ode would be very tedious and wouldneed to be redone with ea
h new release from Sun. Yetwithout redu
ing these global referen
es to lo
al, it may beimpossible to a
hieve a

eptable performan
e.Pra
ti
al lo
al quali�
ation has proven unexpe
tedlydiÆ
ult for programmers. Furthermore, formally de�ning8

www.manaraa.com

how lo
al quali�
ation may be used in a sound manner hasbeen an ongoing sour
e of bugs in the Titanium languagedesign. For these reasons, we have implemented a lo
alquali�
ation inferen
e engine, LQI, and made it available asan optimization within the Titanium
ompiler.5.2 A

ommodating Titanium FeaturesTitanium
ontains many features not present in the lan-guages presented earlier. However, these may all be han-dled without diÆ
ulty; the
ore issues of type expansion andpointer validity
an be extended to a

ommodate a realisti
language. We brie
y des
ribe the highlights.Titanium is obje
t-oriented, with methods, inheritan
e,and
lass- and interfa
e-based polymorphism. A method'sa
tual arguments must mat
h its formals; thus, if a methodis observed to re
eive a global argument in any
ontext, the
orresponding formal parameter is
onstrained to be globalwithin the method body. Titanium permits impli
it
oer-
ion from lo
al to global, so a method
an re
eive a lo
alargument in one
ontext and a global elsewhere. The lo
alargument is widened at the point of the
all.Native methods, whi
h are implemented by external C
ode, are treated
onservatively. Be
ause the
ompiler hasno a

ess to the implementation, it is never safe to
hangeeither the formal parameter types or the return type of anative method. This
onservative approa
h
an be takenin any situation where only partial information is available.For example, while the analysis is
urrently whole-program,it
ould be made to a

ommodate separate
ompilation byfor
ing
onservative analysis at module boundaries.Inheritan
e simply indu
es additional
onstraints be-tween parent and
hild
lasses. A sub
lass is
onstrainedto use identi
al types for any �elds inherited from its par-ent. Interfa
es and overridden methods are handled in thesame manner.Arrays are treated similarly to referen
es. An array ofreferen
es is akin to a pointer to n-tuple of homogeneously-typed pointers. A parti
ularly tri
ky issue is handling type
asts involving arrays. When an array is impli
itly
ast toObje
t, we forbid
hanges to any \forgotten" quali�ers be-low the topmost level of the array type. When an Obje
tis dynami
ally
ast ba
k to an array type, we also forbid
hanges to any \remembered" quali�ers below the topmostlevel. By holding the quali�ers �xed in both
ases, we ensurethat any dynami

asts will behave identi
ally in the orig-inal and optimized programs. Otherwise, if quali�ers were
hanged in the array de
laration but not the expli
it
ast,or vi
e versa, dynami

ast failures would o

ur where noneexisted in the original program.5.3 Lo
al Quali�
ation Inferen
e for TitaniumAs implemented in the Titanium
ompiler, the LQI opti-mization is slightly less powerful than the inferen
e systempresented in Se
tion 4. The initial pass, whi
h identi�es ref-eren
es that must remain valid, is omitted. Instead, it isassumed that all referen
es must be valid at all times. Thisis safe, if overly
onservative. In some
ases, when data is
opied a
ross pro
essors but never subsequently used, thevalidity assumption may for
e referen
es to be global whenthey
ould have been lo
al invalid.We have measured the e�e
tiveness of LQI optimizationon several numeri
al kernels and appli
ations. These in-
lude:

annon Cannon's algorithm for dense matrix multipli
ation.We multiply a pair of random 256� 256 matrixes.lu-fa
t LU fa
torization for dense matrixes. We fa
tor a1024 � 1024 element random matrix, partitioned intosixty four 128 � 128 element blo
ks.sample Sample sort, a distributed sorting algorithm. Wesort 220 thirty two bit integer keys, with 64 keys persample.gsrb The Gauss-Seidel Red Bla
k algorithm for solving el-lipti
 partial di�erential equations. We solve a 2048 �128 element problem, partitioned into four 512 � 128element pat
hes a
ross 100 full iterations.pps A parallel solver for the Poisson equation with in�nitedomain boundary
onditions. We solve a 512 � 512element problem partitioned into four 128�128 elementpat
hes, with a re�nement ratio of 16 between
oarseand �ne grids.In all
ases, the programs were run in parallel on fournodes of the Berkeley Network of Workstations (NOW) [1,11℄. Cross-pro
essor reads and writes are implemented bysending messages from node to node, with A
tive MessagesII providing the lightweight fast messaging substrate [14℄.Table 2 shows our experimental results. Note that for
annon and lu-fa
t, two sets of measurements were taken.The \manual" measurements re
e
t the
ode as originallyprodu
ed by the programmer. In both
annon and lu-fa
t,the programmer had already deployed numerous expli
itlo
al quali�ers in an e�ort to speed up the
ode. Thus,the \manual" measurements re
e
t the additional speedupavailable from lo
al quali�
ation opportunities that theprogrammer missed, even in these relatively small kernels.The \auto" variants use the same
ode but with all expli
itlo
al quali�
ations removed. These re
e
t the opposite ex-treme, where a programmer has relied
ompletely upon LQI.As one would expe
t, the manual variants show less rel-ative bene�t than their auto
ounterparts. For lu-fa
t, theprogrammer has already added so many expli
it quali�
a-tions as to leave little room for further improvement. How-ever, the same programmer missed a few important spotsin
annon, even though the entire program is only 180 lineslong. LQI was able to dis
over and optimize these for a 5.7%net speedup.For both
annon and lu-fa
t, manual annotation plusLQI is just slightly faster than LQI alone. Human program-mers
an add expli
it
asts that re
over lo
al quali�ers,but whi
h are only
orre
t due to deep properties of theprogram that stati
 analysis
annot reveal. This aÆrms ourhypothesis that the best design
ombines sele
tive manualannotation with aggressive, sound inferen
e.The measurements as a whole show that improvementvaries widely from program to program. In a sense, LQIidenti�es the portion of a
al
ulation that takes pla
e lo-
ally, and optimizes that to run using fast lo
al pointers.Thus, the bene�t to be gained is dire
tly dependent uponthe lo
ality of the underlying algorithms. A program thatgenuinely uses lots of
ross-pro
essor data will harbor fewopportunities for lo
al quali�
ation. Conversely, an algo-rithm that has been spe
i�
ally designed for s
alable dis-tributed operation will perform most work lo
ally, and only
ommuni
ate very rarely. Su
h algorithms will show largerspeedups from LQI, and the relative speedup will be
ome9

www.manaraa.com

E�e
t on Speed E�e
t on Code SizeBen
hmark Na��ve LQI Improvement Na��ve LQI Improvement
annon manual 53:4 se
 50:3 se
 5:7% 43:5 MB 23:4 MB 46:2%
annon auto 58:1 51:3 13:2% 43:0 23:6 45:2%lu-fa
t manual 131:4 130:1 < 1:0% 78:1 44:6 42:9%lu-fa
t auto 227:1 131:3 42:2% 87:4 44:9 48:7%sample 29:2 21:4 26:6% 40:5 20:3 49:8%gsrb 16:0 15:7 1:9% 99:1 64:4 35:0%pps 92:2 40:3 56:3% 545:0 309:8 43:2%Table 2: Titanium ben
hmark performan
e.greater when working on in
reasingly large problems. Thisis parti
ularly evident in pps, a fairly new algorithm thatis spe
i�
ally designed for s
alable distributed operation. Itperforms relatively more lo
al
al
ulations than gsrb, but isthereby able to greatly redu
e the amount of
ross-pro
essor
ommuni
ation [3℄. Be
ause
ommuni
ation is so
ostly, thisgives mu
h better performan
e in general, and meshes par-ti
ularly well with LQI, for an impressive speedup. Theane
dotal experien
e of programmer who wrote pps is illu-minating. When asked if he had previously put in many ex-pli
it lo
al quali�ers, he replied \Yes, but apparently notanywhere that it mattered." LQI's analysis is more thor-ough and 56.3% more e�e
tive.The primary
on
ern of most Titanium programmers isexe
ution speed. However, LQI also makes
ode smaller.As Titanium is implemented on the NOW, lo
al pointersrequire many fewer instru
tions to use. Table 2 shows thatLQI makes the ben
hmarks'
ode segments 35% to 50%smaller. These sizes ex
lude
ode for the standard Java
lasses, like String or Math. If the standard
lasses are in-
luded as well, the overall redu
tion is smaller, from 13% to18% for a
omplete exe
utable.6 Related WorkNearly one hundred distributed programming languageswere identi�ed ten years ago [2℄, and many more have ap-peared sin
e. We highlight some representative examplesof approa
hes previously taken to the lo
al/global pointerproblem.Olden adds parallelism to C, fo
using on dynami
 stru
-tures augmented with
ompiler-dire
ted software
a
hingand migration [8, 9, 24℄. All Olden pointers are global, so itis never possible to see an invalid lo
al pointer from anotherpro
essor's address spa
e. However, pointer operations re-quire four extra instru
tions to test the pro
essor ID andde
ode the ma
hine address. Data
ow analyses
an elim-inate some redundant
he
ks, but address de
oding alwaysadds one instru
tion of overhead. The inferen
e des
ribed inthis paper
ould
omplement these analyses, using a faster(unen
oded) representation for those pointers that are stat-i
ally guaranteed to be lo
al.Emerald also fo
uses on �ne-grained obje
t mobility [20℄.While lo
al and global are not distinguished at the sour
elevel, sele
ted obje
t �elds may be de
lared as atta
hed. Be-
ause an obje
t and its transitively atta
hed �elds alwayslive in the same address spa
e, the
ompiler
an use fastlo
al addresses to implement atta
hed �elds. This is a safealternative to the te
hniques presented here, but may re-quire more data motion to keep atta
hed �elds
olo
atedas obje
ts migrate. Java remote method invo
ation (RMI)

uses a similar transitive
losure for obje
t serialization.Cid [23℄, Split-C, and Titanium expli
itly distinguish lo-
al and global in the sour
e language. Cid uses a single typefor all global pointers, the distributed equivalent of void *.Split-C assumes all pointers lo
al unless de
lared otherwise,while Titanium referen
es default to global. Cid and Split-Cmake little e�ort to enfor
e soundness; while this is
onsis-tent with C's low-level approa
h, the diÆ
ulty of distributeddebugging
ompounds the standard issue of wild pointers.Titanium attempts to be as safe Java, and does address someof the issues highlighted in Se
tion 3. However, it does notdo so
onsistently or
ompletely, and one
an easily
raft un-sound expressions. Those remaining holes
an now be
losedin light of this resear
h.7 Con
lusions and Future WorkDistributed
omputing environments have distin
t notionsof lo
al and remote memory. However, expli
itly distin-guishing between pointer types
reates several opportuni-ties for unsoundness. We have des
ribed a suite of typesystems that
larify these problems and demonstrate howthey
an be avoided. A simple, asymptoti
ally eÆ
ient typeinferen
e system
an automati
ally insert an optimal set ofquali�ers, redu
ing the burden on the programmer. Exper-iments with the Titanium language show that inferen
e
angreatly improve performan
e, parti
ularly for
odes spe
i�-
ally designed for s
alable distributed exe
ution.The systems presented here
ould be enhan
ed in threeimportant ways. First, the assumption of a two-level mem-ory
ould be generalized to n levels of partitioned addressspa
es. This may be
ome important as simple distributedunipro
essors give way to
lusters of SMP's,
lusters of
lus-ters, and other deep parallel hierar
hies. Se
ond, the modelshould be extended to in
lude mobile
ode, an area of grow-ing interest. A simple approa
h may be to require that onlyrobust free variables appear in any mobile
losure, but morestudy is needed. Finally, polymorphi
 analysis of fun
tions
ould be bene�
ial. For example, this would let Titanium'sLQI automati
ally produ
e both lo
al and global variantsof standard
ontainer
lasses like Ve
tor or Hashtable, forpotentially larger improvements to performan
e.Referen
es[1℄ A. C. Arpa
i-Dusseau, R. H. Arpa
i-Dusseau, D. E.Culler, J. M. Hellerstein, and D. A. Patterson. Sear
-ing for the sorting re
ord: Experien
es in tuning NOW-sort. In Symposium on Parallel and Distributed Tools,pages 124{133, Wel
hes, Oregon, Aug. 1998. Asso
ia-tion for Computing Ma
hinery.10

www.manaraa.com

[2℄ H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Pro-gramming languages for distributed
omputing sys-tems. ACM Computing Surveys, 21(3):261{322, Sept.1989.[3℄ G. T. Balls. A Finite Di�eren
e Domain De
omposi-tion Method Using Lo
al Corre
tions for the SOlutionof Poisson's Equation. PhD thesis, Department of Me-
hani
al Engineering, University of California at Berke-ley, 1999.[4℄ S. T. Barnard and H. D. Simon. A fast multilevel imple-mentation of re
ursive spe
tral bise
tion. In Pro
eed-ings of the Sixth SIAM Conferen
e on Parallel Pro
ess-ing for S
ienti�
 Computing, pages 711{718, Philadel-phia, 1993. SIAM.[5℄ J. Barnes and P. Hut. A hierar
hi
al O(N logN) for
e-
al
ulation algorithm. Nature, 324(4):446{449, De
.1986.[6℄ G. E. Blello
h, C. E. Leiserson, B. M. Maggs, C. G.Plaxton, S. J. Smith, and M. Zagha. A
omparisonof sorting algorithms for the Conne
tion Ma
hine CM-2. In Pro
eedings of the 3rd Annual ACM Sympo-sium on Parallel Algorithms and Ar
hite
tures, pages3{16, Hilton Head, South Carolina, July 21{24, 1991.SIGACT/SIGARCH.[7℄ W. L. Briggs. A Multigrid Tutorial. SIAM Books,Philadelphia, 1987.[8℄ M. C. Carlisle. Olden: Parallelizing Programs withDynami
 Data Stru
tures on Distributed-Memory Ma-
hines. PhD thesis, Department of Computer S
ien
e,Prin
eton University, June 1996.[9℄ M. C. Carlisle and A. Rogers. Software
a
hing and
omputation migration in Olden. In Pro
. 5th ACMSIGPLAN Symposium on Prin
iples and Pra
ti
e ofParallel Programming, PPoPP'95, pages 29{38, SantaBarbara, California, July 1995. Prin
eton.[10℄ J. Choi, J. Demmel, I. Dhillon, and J. Dongarra.S
aLAPACK: A portable linear algebra library for dis-tributed memory
omputers | design issues and per-forman
e. Le
ture Notes in Computer S
ien
e, 1041,1996.[11℄ D. E. Culler, A. Arpa
i-Dusseau, R. Arpa
i-Dusseau,B. Chun, S. Lumetta, A. Mainwaring, R. Martin,C. Yoshikawa, and F. Wong. Parallel
omputing on theBerkeley NOW. In 9th Joint Symposium on ParallelPro
essing, Kobe, Japan, 1997.[12℄ D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krish-namurthy, S. Lumetta, S. Luna, T. von Ei
ken, andK. Yeli
k. Introdu
tion to Split-C. Computer S
ien
eDivision, Department of Ele
tri
al Engineering andComputer S
ien
e, University of California at Berke-ley, version 1.0 edition, Apr. 1996.[13℄ D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-murthy, S. Lumetta, T. von Ei
ken, and K. Yeli
k. Par-allel programming in Split-C. In IEEE, editor, Pro
eed-ings, Super
omputing '93: Portland, Oregon, November15{19, 1993, pages 262{273, 1109 Spring Street, Suite300, Silver Spring, MD 20910, USA, 1993. IEEE Com-puter So
iety Press.

[14℄ D. E. Culler and A. Mainwaring. A
tive message appli-
ation programming interfa
e and
ommuni
ation sub-system organization. Te
hni
al Report UCB CSD-96-918, Computer S
ien
e Division, Department of Ele
-tri
al Engineering and Computer S
ien
e, University ofCalifornia at Berkeley, O
t. 1996.[15℄ J. S. Foster, M. F�ahndri
h, and A. Aiken. A Theory ofType Quali�ers. In Pro
eedings of the 1999 ACM SIG-PLAN Conferen
e on Programming Language Designand Implementation, pages 192{203, Atlanta, Georgia,May 1999.[16℄ J. Gosling, B. Joy, and G. Steele. The JavaTM LanguageSpe
i�
ation. The JavaTM Series. Addison-Wesley,Menlo Park, California, 1996.[17℄ L. Greengard and V. Rokhlin. A fast algorithm forparti
le simulations. Journal of Computational Physi
s,73:325{348, 1987.[18℄ F. Henglein. Dynami
 typing. In B. Krieg-Br�u
k-ner, editor, Pro
. European Symp. on Programming(ESOP), Rennes, Fran
e, pages 233{253. Springer-Verlag, Feb. 1992. Le
ture Notes in Computer S
ien
e,Vol. 582.[19℄ P. N. Hil�nger. Titanium Language Working Sket
h,draft version 0.22w edition, June 14 1999.[20℄ E. Jul, H. Levy, N. C. Hut
hinson, and A. P. Bla
k.Fine-grained mobility in the Emerald system. ACMTransa
tions on Computer Systems, 6(1):109{133, Feb.1988.[21℄ A. Krishnamurthy. Analyses and optimizations forshared address spa
e programs. Ph.D. qualifying ex-amination talk, Nov. 1995.[22℄ R. Milner, M. Tofte, and R. Harper. The De�nitionof Standard ML. The MIT Press, Cambridge, Mass.,1990.[23℄ R. S. Nikhil. Parallel symboli

omputing in Cid. Le
-ture Notes in Computer S
ien
e, 1068, 1996.[24℄ A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J.Hendren. Supporting dynami
 data stru
tures ondistributed-memory ma
hines. ACM Transa
tions onProgramming Languages and Systems, 17(2):233{263,Mar. 1995.[25℄ P. Ruzi
ka and I. Pr��vara. An almost linear Robinsonuni�
ation algorithm. A
ta Informati
a, 27(1):61{71,1989.[26℄ K. Yeli
k, D. Culler, and J. Demmel. Programmingsupport for
lusters of multipro
essors (CLUMPs).Talk presented at Lawren
e Livermore National Lab-oratories, Mar. 1997.[27℄ K. Yeli
k, G. Pike, C. Miyamoto, B. Liblit, A. Krish-namurthy, P. Hil�nger, S. Graham, D. Gay, P. Colella,and A. Aiken. Titanium: a high-performan
e Javadiale
t. In ACM Workshop on Java for High-Performan
e Network Computing, pages 1{13, Stan-ford, California, Feb. 1998. Asso
iation for ComputingMa
hinery.11

www.manaraa.com

A Operational Semanti
s and SoundnessIn this appendix we prove that the type
he
king system pre-sented in Se
tion 3.3 is sound with respe
t to an operationalsemanti
s. We fo
us on the sequential subset of the lan-guage, whi
h in
ludes everything ex
ept transmit expres-sions. Be
ause the semanti
 problems with lo
al and globalpointers are the representation and movement of pointersbetween address spa
es, dealing with
on
urren
y
ompli-
ates the semanti
s while also obs
uring the
ore issues. Thelanguage subset we work with is:e ::= J j x j f e j " e j # e j widen e je1 ; e2 j e1 := e2 j he1; e2i j �1 e j �2 eFurthermore, we restri
t primitive fun
tions to be mappingsfrom integers to integers. This simpli�es the proof withouthiding any
ore issues.A.1 Semanti
 DomainsWe use the semanti
 domains given in Figure 15. The treat-ment of stored pairs is unusual and is explained below.M the set of ma
hinesA the set of lo
al addressesId the set of identi�ersT the set of all typesG = M �A global addressesV = J+A+G+ V � V valuesSV = J+A+G+A�A values that
an be storedStore = G! SVFun = J! JEnv = Id! Fun+ VFigure 15: Semanti
 domains.We use the following
onventions for naming elements ofthe semanti
 domains.m;m0;m0; : : : 2M a ma
hinev; v0; v0; : : : 2 V a valuesv; sv0; sv0; : : : 2 SV a storable valueS; S0; S0; : : : 2 Store a storeE 2 Env the environmente; e0; e0; : : : a sour
e expressioni; i0; i0; : : : 2 J an integerg; g0; g0; : : : 2 G a global pointera; a0; a0; : : : 2 A a lo
al pointerIn the operational semanti
s, the use of i, a, or g in thehypothesis should be read as a
onstraint, not a
omment.That is, a hypothesis e ! i means that e must evaluate toan integer for the rule to be appli
able.We write global addresses as a pair hm;ai of ma
hineand lo
al address. Global addresses
an be distinguished

from pair values hv1; v2i by
ontext, as ma
hines
annot bea
omponent of pairs.A store is a �nite fun
tion from global addresses to val-ues. When a value is
reated a new lo
ation in the storemust be allo
ated. The fun
tionnew : Store�M ! Atakes a store and a ma
hine m and returns a fresh lo
aladdress. We also use a shorthandnewn(m;S) = ha1; : : : ; anito simultaneously obtain n distin
t fresh addresses in a lo
almemory. By \fresh" we mean that new satis�es:new(m;S) = a =) a =2 dom(�a:S(hm;ai))In other words, the new address is not already in use onma
hine m.An unusual aspe
t of the domains is the treatment ofpairs. Unboxed pairs are treated as values, but only pairs ofaddresses are pla
ed in the store. Be
ause the operations �1and �2 take the addresses of pair
omponents, and be
ausethese addresses are then �rst-
lass values, we must modelthe lo
ation in the store of the
omponents of the pair aswell as the pair itself. This is done most dire
tly by simplystoring the two
omponents of the pair at di�erent addresses,rather than more usual solution of representing the entirepair value with a single address. To maintain the knowledgethat these two
omponents represent a pair we store the pairof addresses at the address of the pair itself.For example,
onsider an unboxed pair
onsisting of twointegers h5; 6i. Taking the address "h5; 6i for
es the pair tobe pla
ed in the store S. Three new lo
ations on the lo
alma
hine m are allo
ated to store the pair:S(hm;a1i) = ha2; a3iS(hm;a2i) = 5S(hm;a3i) = 6The value of "h5; 6i is the pair address a1. Sele
ting theaddress of the �rst �eld �1 "h5; 6i has the value a2.Nested pair values are stored re
ursively when boxed.Thus the expression "hh5; 6i; 7i allo
ates �ve new lo
ationsin the lo
al store for the three integers and two pairs:S(hm;a0i) = ha1; a4iS(hm;a1i) = ha2; a3iS(hm;a2i) = 5S(hm;a3i) = 6S(hm;a4i) = 7In pra
ti
al language implementations only the \leaf" values5, 6, and 7 are stored and the knowledge of the grouping ofthe addresses into pairs is maintained impli
itly inside the
ompiler. The stored pair values are the semanti
 represen-tation of this
ompiler knowledge.Unboxing a nested pair is the inverse of boxing a pair:any stored address pairs are traversed re
ursively to re
reatethe unboxed value. In the example just given # "hh5; 6i; 7i isthe value hh5; 6i; 7i.12

www.manaraa.com

A.2 Operational Semanti
sOperational rules have the form:m;S0; E ` e! v; S1whi
h should be read \on a given ma
hine m in store S0and environment E, the expression e evaluates to the valuev and produ
es a new store S1."The rules for integer, variable, and fun
tion appli
ationexpressions are simple.m;S;E ` i! i; S E(x) = v 2 Vm; S;E ` x! v; Sm; S0; E ` e! i; S1E(f) = � 2 Fun �(i) = i0m;S0; E ` f e! i0; S1The rules for referen
ing and dereferen
ing values are themost elaborate. We need a number of auxiliary fun
tions.Let a � hb;
i = ha; b;
i be a tuple append operator. Appendmay also be applied on the right hb;
i � a = hb;
; ai and tosets of tuples: a �B = fa � b j b 2 BgA path is a tuple with elements appearing in an order de-s
ribed by the regular expression ($ j %)?sv. That is, a path
onsists of a sequen
e of $ and %, ex
ept for the last ele-ment whi
h is a storable value. A path des
ribes a sequen
eof sele
tions within a pair (taking either the left or right
omponent) to rea
h a storable value. We write t; t0; t0; : : :to denote paths.A pure path is a tuple with elements appearing in an or-der des
ribed bu the regular expression ($ j %)?. We writep; p0; p0; : : : to denote pure paths. Figure 16 de�nes a num-ber of fun
tions on paths and values.Taking the address of any value but a pair simply boxesthe value by allo
ating a lo
al address on the
urrent pro-
essor and storing the value at that address. As des
ribedabove, the
omponents of pairs are re
ursively boxed.m;S0; E ` e! v; S1Paths(v) = fp1; : : : ; pl; pl+1 � svl+1; : : : ; pn � svng where p1 = hinewn(m;S1) = fa1; : : : ; angsvi = haj ; aki where pi� $= pj and pi� %= pk, for 1 � i � lS2 = S1[hm; a1i sv1; : : : ; hm; ani svn℄m;S0; E ` " e! a1; S2For dereferen
es there are two
ases. For a dereferen
e ofa lo
al pointer, we use the auxiliary fun
tion Value de�nedin Figure 16 to unbox the value. For a dereferen
e of a globalpointer we use auxiliary fun
tion WideValue, whi
h widenswidens any lo
al pointer appearing at the top level but isotherwise identi
al to Value.m;S0; E ` e! a; S1m;S0; E ` # e! Value(S1; hm;ai); S1m;S0; E ` e! g; S1m;S0; E ` # e!WideValue(S1; g); S1

The rules for widening, sequen
ing, and pairing arestraightforward. m;S0; E ` e! a; S1m;S0; E ` widen e! hm; ai; S1m;S0; E ` e1 ! v1; S1m;S1; E ` e2 ! v2; S2m;S0; E ` e1 ; e2 ! v2; S2m;S0; E ` e1 ! v1; S1m;S1; E ` e2 ! v2; S2m;S0; E ` he1; e2i ! hv1; v2i; S2The rule for assignment is
ompli
ated by the semanti
sof assigning into pairs. Assume a is a boxed lo
al pointer toa pair of integers. Then the assignment a :=h1; 2i overwritesthe two integers of the pair in the store with the integers 1and 2. This semanti
s
orresponds dire
tly to the stru
tureassignment primitive in the C programming language. Theauxiliary fun
tions LeafAddresses and LeafPaths in Figure 16provide the me
hanism for mat
hing addresses with the val-ues to be assigned. Note that in the
ase where S(hm;ai)and v are not pairs, the sets of leaf addresses and leaf valuesare just fhhm; aiig and fhvig respe
tively.m;S0; E ` e1 ! a; S1m;S1; E ` e2 ! v; S2LeafAddresses(S2; hm; ai) = fp1 � g1; : : : ; pn � gngLeafPaths(v) = fp1 � sv1; : : : ; pn � svngS3 = S2[g1 sv1; : : : ; gn svn℄m;S0; E ` e1 := e2 ! v; S3m;S0; E ` e1 ! g; S1m;S1; E ` e2 ! v; S2LeafAddresses(S2; g) = fp1 � g1; : : : ; pn � gngLeafPaths(v) = fp1 � sv1; : : : ; pn � svngS3 = S2[g1 sv1; : : : ; gn svn℄m;S0; E ` e1 := e2 ! v; S3The �nal four rules implement the �n operators, whi
hreturn the addresses of pair
omponents.m;S0; E ` e! a; S1 S1(hm;ai) = ha1; a2im;S0; E ` �1 e! a1; S1m;S0; E ` e! a; S1 S1(hm;ai) = ha1; a2im;S0; E ` �2 e! a2; S1m;S0; E ` e! hm0; ai; S1 S1(hm0; ai) = ha1; a2im;S0; E ` �1 e! hm0; a1i; S1m;S0; E ` e! hm0; ai; S1 S1(hm0; ai) = ha1; a2im;S0; E ` �2 e! hm0; a2i; S113

www.manaraa.com

Paths(v) = (fhig [($ �Paths(v1)) [(% �Paths(v2)) if v = hv1; v2ifhvig otherwiseLeafPaths(v) = fx j x 2 Paths(v) ^ x = p � svgLeafAddresses(S; hm; ai) = 8><>:($ �LeafAddresses(S; hm; a1i)) if S(hm; ai) = ha1; a2i[(% �LeafAddresses(S; hm; a2i))fhhm; aiig otherwiseValue(S; hm; ai) = 8><>:hValue(S; hm;S(hm; a1i)i); if S(hm; ai) = ha1; a2iValue(S; hm;S(hm; a2i)i)iS(hm;ai) otherwiseWideValue(S; hm; ai) = (hm; a0i if S(hm;ai) = a0Value(S; hm;ai) otherwiseFigure 16: Auxiliary fun
tions for boxing, unboxing, and assignment.A.3 SoundnessBefore we
an prove type soundness we need to state whatrepresentation we expe
t the values of types to have. Fig-ure 17 de�nes a predi
ate Consistent that re
ursively
om-pares a type with a value and a store to
he
k that thevalue mat
hes requirements of the type. We say that astore S on ma
hine m is
onsistent with value v and type� if Consistent(m;S; hv; �i) is true. We extend
onsisten
yto apply to sets of values and types as well. If U is a setof value/type pairs, then Consistent(m;S; U) if and only ifConsistent(m;S; u) for all u 2 U .There is a another soundness issue we must a

ount for.Our language allows pointer aliasing, and the language willbe unsound if stored pointer values
an be given di�erenttypes by di�erent aliases. In parti
ular,if x : boxed lo
al valid boxed lo
al invalid �and y : boxed lo
al valid boxed lo
al valid �and x and y happen to refer to the same pointer, then thetype system will permit an assignment of an invalid pointerinto x, thereby giving y a value that disagrees with its type.The Consistent predi
ate
annot dete
t this situation; to
he
k this it is ne
essary to
ompare all the di�erent typingsof ea
h memory address through all of its aliases to ensurethey agree.The fun
tion StoreType in Figure 18
aptures the neededproperty. A StoreType maps mutable lo
ations to types, ?,or >. The ordering of elements is ?� � � >, with all types �being in
omparable. The least upper bound of two elementsis the smallest element that is � to both. The least upperbound of two fun
tions is de�ned point-wise:(f t f 0)(x) = f(x) t f 0(x)If a store typing st has the property that st(g) = >, thenthe lo
ation g is typed di�erently by two or more aliases ofthe lo
ation; in this
ase we say the store typing st is notuniform. If there is no g su
h that st(g) = > then all of thealiases of all mutable lo
ations agree on the types of thoselo
ations: the store typing is uniform. Predi
ate Uniformin Figure 18 formalizes this notion.Data that is immutable need not have the same typing forevery alias. StoreType does not require the top-level pointer

en
ountered in its traversal of a value to have a uniform vieweverywhere. This pointer is not itself mutable, only the datait points to is mutable.Finally, the full notion of soundness we need simulta-neously
on�rms that the exe
ution and type environmentsalso agree. For this purpose it is useful to
ombine the twoenvironments pairwise, mat
hing ea
h variable's value withits
orresponding type:E on A = fhE(x); A(x)i 2 U j x 2 dom(E) \ dom(A)gFor the soundness proof we require that the exe
ution andtype environments agree from the outset; that is, dom(E) =dom(A).Be
ause we do not have any iteration
onstru
ts in oursmall language, all
omputations are terminating. We
anuse this fa
t to sidestep the usual issues with showing typesoundness even for in�nite
omputations. We simply showthat if an expression has any type then
omputation nevergoes wrong, provided the
omputation is performed in anenvironment
onsistent with the typing assumptions.A.4 Main Soundness TheoremTheorem 1. Let A ` e : � . Assume thatm is a ma
hine,S is a store, and E is an environment su
h that dom(E) =dom(A). If initiallyUniform(StoreType(m;S;E on A))then m;S;E ` e! v; S0^ Consistent(m;S0; (E on A) [fhv; �ig)i.e.,
omputation su

eeds and ends in a state where allvalues have types
onsistent with the store.The proof is omitted from this summary, but theinterested reader
an �nd the
omplete version at<http://www.
s.berkeley.edu/Resear
h/Proje
ts/titanium/popl-00/>.14

www.manaraa.com

U = V � TU 2 2Uu; u0; u0; : : : 2 UConsistent : M � Store� U ! booleanConsistent(m;S; hi; inti) () trueConsistent(m;S; ha; boxed lo
al invalid �i) () trueConsistent(m;S; hg; boxed global invalid �i) () trueConsistent(m;S; hhv1; v2i; h�1 ; �2ii) () Consistent(m; S; hv1; �1i)^ Consistent(m; S; hv2; �2i)Consistent(m;S; ha; boxed lo
al valid inti) () S(hm; ai) is de�ned^ Consistent(m; S; hS(hm; ai); inti)Consistent(m;S; ha; boxed lo
al valid boxed ! � �i) () S(hm; ai) is de�ned^ Consistent(m; S; hS(hm; ai); boxed ! � �i)Consistent(m;S; ha; boxed lo
al valid h�1 ; �2ii) () S(hm; ai) = ha1; a2i^ Consistent(m; S; ha1; boxed lo
al valid �1i)^ Consistent(m; S; ha2; boxed lo
al valid �2i)Consistent(m;S; hhm0 ; ai; boxed global valid inti) () S(hm0; ai) is de�ned^ Consistent(m0 ; S; hS(hm0 ; ai); inti)Consistent(m; S; hhm0; ai; boxed global valid boxed ! � �i) () S(hm0; ai) is de�ned^ Consistent(m0 ; S; hS(hm0 ; ai); boxed ! � �i)Consistent(m;S; hhm0; ai; boxed global valid h�1 ; �2ii) () S(hm0; ai) = ha1; a2i^ Consistent(m; S; hhm0; a1i; boxed global valid �1i)^ Consistent(m; S; hhm0; a2i; boxed global valid �2i)Consistent(m;S;U) () û2U Consistent(m; S; u)Figure 17: Consistent stores.
15

www.manaraa.com

ST = G! (�+ ? +>)StoreType : M � Store� U ! STStoreType(m;S; hi; inti) = �x: ?StoreType(m;S; ha; boxed lo
al invalid �i) = �x: ?StoreType(m;S; hhm0 ; ai; boxed global invalid �i) = �x: ?StoreType(m;S; hhv1; v2i; h�1 ; �2ii) = StoreType(m;S; hv1; �1i)t StoreType(m;S; hv2; �2i)StoreType(m;S; ha; boxed lo
al valid inti) = �x: ? [hm; ai int℄t StoreType(m;S; hS(hm; ai); inti)StoreType(m;S; ha; boxed lo
al valid boxed ! � �i) = �x: ? [hm; ai boxed ! � � ℄t StoreType(m;S; hS(hm; ai); boxed ! � �i)StoreType(m;S; ha; boxed lo
al valid h�1 ; �2ii) = �x: ? [hm; ai h�1; �2i℄t StoreType(m;S; ha1; boxed lo
al valid �1i)t StoreType(m;S; ha2; boxed lo
al valid �2i)where S(hm; ai) = ha1; a2iStoreType(m;S; hhm0 ; ai; boxed global valid inti) = �x: ? [hm0; ai int℄t StoreType(m0; S; hS(hm0; ai); inti)StoreType(m; S; hhm0; ai; boxed global valid boxed ! � �i) = �x: ? [hm0; ai boxed ! � � ℄t StoreType(m0; S; hS(hm0; ai); boxed ! � �i)StoreType(m;S; hhm0; ai; boxed global valid h�1 ; �2ii) = �x: ? [hm0; ai h�1; �2i℄t StoreType(m;S; hhm0 ; a1i; boxed global valid �1i)t StoreType(m;S; hhm0 ; a2i; boxed global valid �2i)where S(hm0 ; ai) = ha1 ; a2iStoreType(m;S;U) = Gu2U StoreType(m;S; u)Uniform : ST ! booleanUniform(st) () �g:st(g) = >Figure 18: Uniform store typings.
16

