Type Systems for Distributed Data Structures *

Ben Liblit
1iblit@cs.berkeley.edu

Alexander Aiken
aiken@cs.berkeley.edu

Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720-1776

Abstract

Distributed-memory programs are often written using a
global address space: any process can name any memory
location on any processor. Some languages completely hide
the distinction between local and remote memory, simpli-
fying the programming model at some performance cost.
Other languages give the programmer more explicit control,
offering better potential performance but sacrificing both
soundness and ease of use.

Through a series of progressively richer type systems,
we formalize the complex issues surrounding sound compu-
tation with explicitly distributed data structures. We then
illustrate how type inference can subsume much of this com-
plexity, letting programmers work at whatever level of detail
is needed. Experiments conducted with the Titanium pro-
gramming language show that this can result in easier de-
velopment and significant performance improvements over
manual optimization of local and global memory.

1 Introduction

While there have been many efforts to design distributed,
parallel programming languages, none has been completely
satisfactory. Many approaches present the illusion of a sin-
gle shared, global address space. While easy for program-
mers to understand, this approach hides the real structure
of memory, making it difficult to exploit locality of data. In
complex applications where local memory accesses may be
orders of magnitude faster than remote accesses, this can
seriously harm performance, development time, or both.

Another approach is to reveal the full distributed mem-
ory hierarchy at the language level. A popular model is to
allow a mixture of global and local pointers: the former span
the entire global address space, while the latter only address
memory that is physically colocated with a given proces-
sor. This supports globally shared data structures while still
allowing efficient implementation of algorithms specifically
structured for distributed parallel execution [4-7,10,17, et
all.

*This research was supported in part by NASA Contract No.
NAG2-1210 and an NDSEG fellowship.

To appear in POPL ’00.

Historically, programming languages that expose muta-
ble local and global addresses have been unsound. Designing
a sound type system which allows local and global pointers
turns out to be a subtle problem. Exposing local/global also
places an additional burden on the programmer, who may
be forced to attend to the details of memory layout even in
sections of code that are not performance critical.

This paper makes three principal contributions:

e Through a progression of sound type systems, we illus-
trate and clarify the semantic issues surrounding local
and global pointers.

e We present a type inference system that is capable of
completing a program with inferred local/global anno-
tations, thereby relieving the programmer from man-
aging address spaces in much or all of the code.

e We present experimental results showing that this in-
ference algorithm improves program performance sig-
nificantly, simplifies development, and does a better job
than hand-optimization by humans.

The remainder of this paper is structured as follows.
Section 2 offers a primer on the common terminology with
which we discuss distributed address spaces and highlights
some of the performance costs of simpler models that treat
distributed memory as though it were shared memory. In
Section 3 we develop a series of small languages and type
systems that codify sound computing with distributed mu-
table data structures. The more expressive systems are also
more complex; Section 4 shows how type inference can sim-
plify programming while retaining the full power of the type
system. We have applied these principles to the Titanium
programming language, and report the results of our exper-
iments in Section 5. Section 6 reviews related work. We
conclude in Section 7 by summarizing our findings, and dis-
cussing directions for future research.

2 Background

When describing interconnections between allocated blocks
of data, we use the term pointer, which reinforces the idea
that we are discussing very low level operations. Although
pointers can implement Standard ML ref’s [22] or Java ref-
erences [16], pointers are more primitive.

Our distributed memory model is an explicit two-level
hierarchy with local and global memory. Local memory is
physically colocated with a processor. A system with six-
teen processors has sixteen distinct local memories. A local

www.manaraa.com

if (p.processor == MyProcessor)
result = *p.address;
else
result = RemoteRead(p.processor, p.address);

Figure 1: Dereferencing a global pointer. Because
“result” may receive its value from an opaque function call,
the compiler is unlikely to be able to effectively optimize any
code that uses the resulting value.

CM-5 T3D
function 2.8 psec/edge 1.19
inline 2.0 0.71
optimized 1.3 0.66
narrow 1.15 N/A

Table 1: Costs of global pointers to local data. “Func-
tion” uses global pointers and requires a function call for
every read or write. “Inline” inlines global pointer code di-
rectly at the point of use. “Optimized” uses extensive manual
optimization and likely represents the theoretical best perfor-
mance possible for global references. “Narrow” uses simple
pointers, and represents a level of performance only possible
with true, physically shared memory.

pointer encodes an address within one local memory and
corresponds to a pointer or memory address in standard
languages. Local pointers do not travel well; a local address
formed on one processor is meaningless elsewhere.

Global memory is the union of all local memories. If
we assume that processors are uniquely numbered, then a
global pointer encodes a pair (processor,address), with a
home processor and an address within that processor’s lo-
cal memory. Global pointers have a different representation
from local pointers and are more costly to use. Manipulating
remote memory may involve special machine instructions,
trapping into the operating system, or function calls into a
message-passing library. The exact mechanism is irrelevant.
What matters is that global and local pointers have different
representations and are manipulated using different opera-
tions.

While dereferencing a global pointer to another proces-
sor’s memory can be extremely slow, even a global pointer
into local memory generally incurs a performance penalty.
As Figure 1 illustrates, dereferencing a global pointer that
turns out to be local may entail comparing two values, ig-
noring a branch to the remote fetch clause, dereferencing
the local address, and branching to the end of the entire
conditional. The presence of a branch, combined with the
possibility of a function call, may make it difficult for an
optimizing compiler to improve code using the result of a
statically global dereference.

Benchmarking quantifies these concerns. A Split-C [13]
benchmark was run using various strategies to implement
global pointers. The benchmark, EM3D, repeatedly walks
across an irregular bipartite graph performing a simple cal-
culation. We can estimate the cost of global pointers to local
data by computing the average time required per edge when
all data is stored locally. Table 1 shows times collected on
a Thinking Machines CM-5 and partial times collected on a
Cray T3D. These findings were originally presented in [21]
and [26], respectively.

The benchmark reveals that the performance cost of us-
ing global pointers for local data is significant. Even when

the code for reading and writing through global pointers ref-
erences is inlined, the CM-5 shows nearly a 75% slowdown
compared with simple pointers. This is largely due to lost
opportunities for optimization. Extensive manual optimiza-
tion included relocating code into the “local” clause of the
locality test to avoid a branch. Such heroic efforts bring per-
formance to within 13% of simple pointers; the difference is
probably due to less effective register use and the increased
time to move larger amounts of data around in memory.

Thus, high performance parallel code must acknowledge
the distributed nature of memory. Where data structures
genuinely span processor boundaries, global pointers are en-
tirely appropriate. But when static information can prove
that data is always local, global pointers are needlessly
costly.

3 A Progression of Type Systems

We present a suite of three languages and type systems
that offer both global and local pointers, illustrating the key
soundness issues that arise when manipulating distributed
data structures. All three systems have been reduced to es-
sentials to more clearly illuminate the novel issues. These
are not languages in which one would program directly.
Rather, these languages should be considered as just barely
above the level of primitive machine addressing.

Our foremost concern is distributed data, not mobile
code. Therefore, none of the languages we describe contains
A expressions, let bindings or any other facility for introduc-
ing new functions, variables, or closures. Rather, we assume
a fixed set of named functions and variables available in an
initial environment. Functions are not first-class; function
types are not data types, and function names only appear
directly applied to arguments. In Section 7 we briefly con-
sider extensions allowing first-class functions; for now, we
focus on data.

Similarly, we omit the details of a parallel semantics. A
single language construct, the unary transmission operator,
represents an explicit transfer of information from one pro-
cessor to another. An expression of the form “transmit e”
should be read as evaluating expression “e” on one proces-
sor, then transmitting the result to a different processor.
The result of a transmit expression is the value as seen on
the receiving processor. This is the only explicit commu-
nication primitive; all other data is exchanged implicitly,
via global pointers. The presentation here is deliberately
somewhat informal. An operational semantics and sound-
ness proof for the most complex type system are presented
in the appendix.

The first language contains local and global pointers with
arbitrary levels of indirection but without updates. The sec-
ond language introduces an assignment operator for destruc-
tive updates. The third language adds pairs with updatable
fields, which model the composite records, objects, or data
structures of higher level languages.

3.1 System I: Simple Pointers

Our first language contains integers, local and global point-
ers, and basic pointer operations. It has neither destruc-
tive assignment nor compound data types; these are added
in sections 3.2 and 3.3, respectively. Expression and type
grammars are given in Figure 2. Figure 3 gives type check-
ing rules. A type environment, A, encapsulates information
about externally defined variable and function names.

www.manaraa.com

integer literals

J|lz| fe]| Te | le | widen e | transmit e
int | boxed w T

local | global

€ 39 o &

Figure 2: Expressions and types I. Ezpressions are given
by e, while T represents expression types.

AF J: int

A(fy=7—>17 Are:rT
Ar fe: 7

ArFe: T
AF Te:

boxed local 7

A F e : boxed local 7
Al le: 7

A : boxed global T

Foe
Atk le:

expand(T)

Atk e:
A F widen e

boxed local T

. boxed global 7

ArFe: T
A F transmit e :

expand(T)

Figure 3: Type checking rules I.

: processor 0 :

: processor 1 :

Figure 4: Situation requiring type expansion.

To discuss pointers and pointer operations, we work with
boxed and unboxed values. As is standard, types represent
unboxed values unless explicitly boxed. One may take a
value’s address using the “1” indirection operator, so while
“5” is a pattern of bits representing five, “t5” is a local
pointer to a memory location holding the value five. We
use “boxed” to describe pointer types, augmented with a
width qualifier to distinguish global from local pointers. The
“widen” operator widens a local pointer to global. Hence:

5 : int
15 : boxed local int
115 : boxed local boxed local int
widen 115 : boxed global boxed local int

The “]” dereferencing operator retrieves the value ad-
dressed by a pointer. Dereferencing a local pointer works as
expected, essentially stripping off an outer level of boxing.
Dereferencing a global pointer is more subtle.

3.1.1 Implicit Type Expansion

The difficulty with global pointer dereferencing is illustrated
in Figure 4. Dotted lines mark local memory boundaries; in
this case, we have two processors and therefore two local
memories. Processor 1 has constructed a local pointer to
a memory location storing the value five. We indicate local
pointers using a single arrow. Processor 0 has a variable = of
type boxed global boxed local int: a global pointer to a
local pointer to an integer. We use double arrows to indicate
global pointers. A naive dereference of z would simply ex-
tract the local pointer value 1 5. However, that local pointer
is meaningless in processor (’s local address space. Rather,
as the figure suggests, the local pointer addressed by z must
be widened, so that |z is global as well. The new global
pointer’s home processor is 1, while its address on processor
1 is the same as the address expressed by 1 5.

Widening is only needed when an operation could cause
the value of a local pointer to cross processor boundaries.
Thus, if y : boxed global int is a global pointer to an inte-
ger, then |y : int is the value of that integer. Similarly, if
z : boxed global boxed global int is a global pointer to a
global pointer to an integer, then |z : boxed global int
would traverse one level of indirection, yielding a global
pointer to an integer. Widening is required when transmit-
ting a local pointer: if 15 has type boxed local int, then
transmit 15 must have type boxed global int, or else the
receiving processor would be left holding a local pointer into
the wrong address space. But transmit 5 requires no special
manipulation, because integers travel safely across processor
boundaries.

www.manaraa.com

ezpand(boxed local 7) 2 boxed global 7

LY

expand(T) T otherwise

Figure 5: Type manipulating functions I.

J = integer literals
x= J]z | fe|Te]| le| widen e | transmit e
e;e|e:=e
T == int | boxed w T
== local | global

Figure 6: Expressions and types II. Relative to Figure 2,
expressions now allow sequencing (;) and assignment (:=).

The ezpand function, used in the final two type rules,
is given in Figure 5. It widens local pointers to global, but
leaves other types unchanged. Simple though this may seem,
real parallel programming languages do not necessarily get
this right. Split-C, for example, makes no effort to prevent
processors from seeing each other’s local pointers. In cases
like Figure 4, the programmer is expected to extract the
processor number from z and manually combine that with
the local pointer at | x to produce a valid global pointer.
Forgetting to do so elicits no warning from the compiler;
the program simply contains a wild pointer [12].

3.2 System II: Assignable Pointers

We now extend the language with destructive assignment
through pointers. An updated grammar appears in Figure 6.
To help support assignment we have also added sequencing.

Given a pointer to some memory location and a compat-
ible value, the new “:=” assignment operator writes a new
value into the pointed-to location, replacing what may have
been stored there before. The pointer itself is unchanged; it
merely identifies the target of the store operation. This is a
more primitive operation than, for example, assignment to
an ML ref, although ML assignment could be implemented
using our primitive plus an extra level of indirection. The
key point is that the left hand side of an assignment must
always be a pointer, and that the new value is placed in the
location to which the pointer refers.

3.2.1 Type Expansion Versus Assignment

Type checking rules for the augmented language are given
in Figure 7. As before, the interesting case is a global
pointer to local pointer, such as z in Figure 8. Suppose that
global pointer z is to receive an assignment, via “z :=16".
The types seem, superficially, to match: = addresses a local
pointer to int, and 16 is also a local pointer to int. Yet
that local pointer would be meaningless if transported from
processor (across to processor 1. Widening 16 to global
is no solution either, because the box to which x points is
typed as local.

In general, then, we must forbid assignment to local
pointers across globals. The local pointer value can be read,

AF J: int

A(fy=71—>7 Are:r
AF fe: 7

AFe: T
Al Te:

boxed local 7

A F e : boxed local 7
Al le: 7

A : boxed global T

Foe
AF le:

expand(T)

Atk e:
A F widen e

boxed local T

. boxed global 7

ArFe: T
A F transmit e : expand(T)
ArFe:7 AF e 7
Al e;e 7
AF e : boxedlocalt Ak e : 71

AtF e:=e : 71

: boxed global 7
DT robust(r)
AtF e:=e : 71

Ak
AF

e
!
e

Figure 7: Type checking rules II. Rules above the dotted
line are identical to those in Figure 3, while those below the
line are new.

: processor 0 :

Figure 8: Situation precluding assignment.

www.manaraa.com

ezpand(boxed local 7) 2 boxed global 7

expand(T) T otherwise

robust(boxed local 7) 2 false

LY

robust(r) true otherwise

Figure 9: Type manipulating functions II. The ezpand
function is unchanged from Figure 5. The robust predicate
18 new.

J = integer literals
x= J x| fe|Te]| le| widen e | transmit e

e;e|e:=e|{ee)| @le| @e

T == int | boxedw p 7 | (7, T)
w = local | global
p == valid | invalid
p<p valid < invalid T<T

boxed w p T < boxedw p' T <= p<p
(r1,m2) < {1, 7)) <= n<A™ <

Figure 10: Expressions and types III. Relative to Fig-
ure 6, expressions now allow pair creation ({_,_)) and selec-
tion (@n). Types include pairs, and the pointer types now
carry an additional validity qualifier p. A subtyping relation
has been added.

subject to expansion as seen earlier. But it can never be
updated. The core issue is that local pointers cannot travel
across processor boundaries, and global pointers use a dif-
ferent and incompatible representation. Figure 9 gives the
robust predicate that enforces these restrictions. A robust
type is one that can safely travel across a global pointer
during an assignment. Note that assignment across local
pointers requires no such test, as it is always safe providing
the source and destination types match.

3.3 System III: Assignable Tuples

Lastly, we enrich the language with tuples. For simplicity,
we only permit pairs; general m-tuples contribute nothing
novel. The language, type grammars, and subtyping rules
appear in Figure 10. We have added a pair constructor (_, _),
plus two new operators for decomposing pairs.

Given a valid pointer to a pair, the @1 and @2 pair selec-
tion operators produce offset pointers to the first and sec-
ond components of the pair. Again, this is more primitive
than the #n record selection operator from ML, and the two
should not be confused. Assuming that ML records are al-
ways boxed, ML record selection roughly corresponds to pair
selection followed by dereference (] @n). Primitive pair se-
lection alone, without dereference, forms a pointer suitable
for assignment, permitting in-place mutation of one com-

ponent of a pair while leaving the other unchanged. The
need for these atypical operators will become more evident
in Section 3.3.2.

The subtyping relation allows one to weaken pointer
types by promoting certain p qualifiers from valid to
invalid. This qualifier subsumption is allowed at the top
level or embedded anywhere within a top level pair. How-
ever, one cannot change validity qualifiers below a pointer.
If this were permitted, then it would be possible for two
pointers with different types to alias the same value, which is
unsound in the presence of assignment. No implicit changes
to the w qualifier are permitted at all, because this entails
a change of representation, and therefore should logically
produce a new value.

3.3.1 Consistent Representation of Pairs

As we have seen, when an isolated local pointer moves across
processor boundaries, it must be expanded into a global
pointer. What about moving an unboxed pair containing
a local pointer? One option would be to expand the embed-
ded pointer as before. Thus, ezpand((boxed local 7,int))
could be defined as (boxed global 7,int). However, this
means that the expanded pair would have a different rep-
resentation than the original pair. This approach is very
unattractive in any language with named record types (i.e.,
almost all languages). Suppose the programmer declares
Entry as a pair (boxed local 7 ,int) for some 7. What
name would we use for the expanded pair? Entry is inap-
propriate, since the type has changed. Do we synthesize a
new name? Assume that the value belongs to some anony-
mous record type? Any functions that manipulate unboxed
Entry values cannot properly use the expanded pair, because
its representation (and possibly size and component offsets)
will have changed. Treating Entry as polymorphic in its w
qualifiers would entail either generating multiple copies of
code, or else inserting runtime tests wherever polymorphic
pointers are used. But code expansion is undesirable and
runtime pointer tests are exactly what we wish to avoid.

Thus, we wish to ensure that ezpand never causes a pair
to change representation. Local pointers within pairs should
remain local, even when copied between processors. Such
pointers no longer represent valid memory addresses and
must never subsequently be used. We add a new walidity
qualifier, p, to mark when an embedded local pointer has
been invalidated by movement between processors. Thus,
when an unboxed Entry is moved across processor bound-
aries, its embedded local pointer is marked as invalid. But
the second component of the tuple, an embedded integer,
remains accessible. An embedded global pointer would like-
wise arrive unscathed. Any existing function that manipu-
lates unboxed Entry values could still be used, provided that
it only accesses the integer, and never touches the (now in-
valid) local pointer.

Figure 11 presents our final set of type checking rules.
The updated ezpand and restruct functions in Figure 12
complete the picture. A new function, pop, is responsible
for traversing pairs and invalidating any embedded local
pointers. The robust predicate, which forbids unsound as-
signments across global pointers, has been relaxed slightly.
Cross-global assignments to valid local pointers are forbid-
den. But cross-global assignments to invalid local pointers
are allowed: if a local pointer is already invalid on the receiv-
ing end, one can certainly replace it with a different invalid
local pointer. The robust and pop functions have an impor-

www.manaraa.com

Alx)y=r1
AF J: int Abrzx: T
A(fy=1—>717 Are:r1
AF fe: 7
Al e: T
A Te : boxed local valid 7
A F e : boxed local valid T
AF le: 7
A F e : boxed global valid 7
A+ le : erpand(T)
Akre: T
A F transmit e : expand(T)
Are:17 AFRe 7
Al e;e 7

Atk e: AF € 7

boxed local valid 7T
Al e:=€¢ : 1

. boxed global valid 7
! robust(T)

AF e:=¢ : 71

AFe 1
A F (e1,e2) : (11, 72)

A F e : boxed w valid (71, 72)
AF @ne

: boxed w valid 7,

AFe: 7 717

AFe: 7

Figure 11: Type checking rules ITI. Rules above the dot-
ted line are identical to those in Figure 7, or have been
changed trivially to support the p qualifier. Rules below the
line are new.

(1>

expand(boxed local p T) boxed global p T

expand((11,72)) = (pop(71), pop(7=))
ezpand(t) 2 7 otherwise

(1>

pop(boxed local p T boxed local invalid 7

(1>

(pop(11), pop(T2))

7 otherwise

)
pop((T1 s T2>)
pop(T)

(1>

robust(boxed local valid 7) 2 false

LY

robust({T1, 2)) robust(r1) A robust(r2)

'y

robust(T) true otherwise

Figure 12: Type manipulating functions III.

tant relationship: robust(r) is true if and only if pop(r) = 7.
Intuitively, a value can be assigned across a global pointer
if and only if it will not be damaged in transit.

3.3.2 Selection Without Dereference

We can now demonstrate why it is important to have pair se-
lection operators that do not also immediately dereference.
Suppose that we are given a global pointer to (4, (z,5)),
where z is some embedded local pointer. We wish to ex-
tract z. If selection is always coupled with dereference, then
selecting the second component of the pair would produce
the unboxed value (z,5). There is no global pointer asso-
ciated with this value; we have carried the local pointer x
across processors, and can no longer safely use it. Therefore,
the ezpand and pop functions will have correctly marked z
as invalid.

However, if selection and dereferencing are distinct oper-
ations, we can do better. Given a global pointer to (4, (z, 5)),
selecting the second component will produce a global pointer

o (x,5). Selecting the first component of this yields a global
pointer to z. We already know how to use global pointers
to local pointers: dereferencing yields a valid global pointer
equivalent to widen .

Thus, we find that a sequence of selection operations
must not dereference too early. Selection should be treated
as simple pointer displacement. When extracting a value
deeply embedded in nested pairs, all selection displacements
must be applied first, and only then should the final offset
pointer be dereferenced.

4 From Checking to Inference

The third system provides address space management, safe
pointers, and updatable tuples. This forms a suitable start-
ing point for the design of a realistic language for manip-
ulating distributed mutable data structures. However, it
is impractical to expect programmers to systematically an-
notate programs with local/global/valid/invalid type
qualifiers; it is simply too cumbersome and time consuming
(see Section 5.1).

Fortunately, the type qualifiers we have described are
quite amenable to automatic inference. Figure 13 shows a

www.manaraa.com

Alx)y=r1
AF J: int Abrzx 7T
A(fy=7— 1 AFe: T
AF fe: 7
ArFe: T
A F fe : boxed local valid 7
A F e : boxed wvalid 7 ezpand(w,T,T')
AF le: 7
AFe: T erpand(global, T, 7")

A F transmit e : 7'

AkFe:r7 AF € 7
AFe;e o 7

A F e : boxed w valid 7

AF e 1 robust(w,T)

AF e:=¢ : 71

: boxed w p (71, T2)

@ne : boxed w p T,

. boxed local p 7

e
e : boxed global p 7

Figure 13: Type inference rules. Rules above the dotted
line correspond directly to type checking rules in Figure 11,
while the rule below the line is new.

set of inference rules directly derived from the third type
system. One new rule allows implicit coercion of pointers
from local to global. This is allowed at the top level only,
both to keep pair types consistent as well as to avoid the
well-known soundness problems in allowing distinct aliases
of mutable data to have different types. For clarity of pre-
sentation, the rules use several abbreviations:

1. Constraints are not explicitly propagated up from
subexpressions; assume that the complete constraint
set is the simple union of the sets of constraints in-
duced by all subexpressions.

2. A nontrivial rule hypothesis such as
e : boxed w valid 7
should be read as an equality constraint

e : T 7o = boxed w valid 7

3. All constraint variables are fresh.

The inference rules induce a set of constraints on un-
known qualifiers; for example, the operand of any derefer-
ence operator is constrained to be qualified as valid. Fig-
ure 14 shows supporting functions that generate additional
constraints. Type qualifier inference requires finding a solu-
tion to the set of all constraints induced by a program.

Some constraints generated by the pop and robust func-
tions have the following general form:

w” = global = (w = global V p = invalid)

These conditional constraints arise whenever data crosses a
(possibly global) pointer. For example, when dereferencing
a pointer to a pair, if the pointer being dereferenced is global
(w* = global), then either a pointer embedded in the pair
must also be global (w = global) or else it must be marked
invalid (p = invalid).

In general, solving conditional disjunctive constraints
is reducible to satisfiability of boolean formulae in 3-
conjunctive normal form, an NP-complete problem. How-
ever, we can exploit the particular structure of this inference
problem to find a solution efficiently.

Our goal is to minimize the number of global point-
ers. The conditional disjunctive constraints may leave us
with a choice between having a global valid pointer and
a localinvalid one. If either would be correct, we will
always prefer local invalid. Of course, if that pointer is
required to be valid elsewhere, then local invalid is not
an option and we must choose global valid instead.

The constraints have two important properties. First,
the constraints on types can induce constraints on qualifiers,
but constraints on qualifiers do not introduce constraints on
types. Thus, we can resolve the type constraints to ob-
tain the complete set of qualifier constraints. Second, the
conditional qualifier constraints mention only global/local
qualifiers in the antecedents. This observation suggests the
following procedure for selecting a best solution of the con-
straints:

1. Expand the type constraints 7 = 7 and 7 < 7’ to
obtain the complete set of qualifier constraints.

2. Solve the unconditional equality and inclusion con-
straints on p variables. Set any p variable not required
to be valid to invalid. At this point all p variables
are resolved.

www.manaraa.com

ezpand(w”, boxed w p T,boxed W' p' ')
expand(w”, (1, 72), (1, 73))

expand(w”, 7, 7")

pop(w*, boxed w p 7,boxed w' p' 7') 2
pOp(Ld*,<T1,T2>,(T{,T£)) £
!

(1>

{r="}

pop(w”,7,7")

(1>

{w' <\ w<dp=p,T=1"}

(1>

pop(w*, 1, 71) U pop(w”, 72, 75)

2 {r=1'} otherwise

{w* = global = (w = global V p' = invalid),w =w',7=17"}
pop(u.)*, T1, T{) u POP(UJ*y T2, Té)

otherwise

robust(w*,boxed w p 7) 2 {w* =global = (w = global V p = invalid)}

robust(w™, (71, T2))

robust(w*,7) 2 otherwise

robust(w”, 1) U robust(w™, 72)

Figure 14: Constraint generating functions.

3. Remove conditional constraints of the form w* =
global —> (w = global V invalid = invalid).
These are always satisfied.

4. Replace conditional constraints of the form w* =
global =— (w = global V valid = invalid) by
w* < w.

5. Resolve the conditional and unconditional constraints
on w variables. Set any w variables not required to
be global to local. Note that the conditional con-
straints no longer mention p variables, so this step can-
not introduce an inconsistency. It is easy to show that
there is a unique solution minimizing the number of w
variables resolved to global, computable in near linear
time [15,25].

6. Complete the program by adding a minimal set of
explicit widen operators wherever the new local-to-
global coercion rule has been used. This is similar to
Henglein’s minimal completions [18], but with neither
induced coercions nor projections, and requiring only a
linear-time pass across the derivation tree.

We note that setting all possible variables to global and
valid will always produce one legitimate solution to the
constraints. Thus, languages that require all pointers to be
global are safe, albeit overly conservative.

5 Experimental Implementation

5.1 A Practical Need for Sound Inference

Titanium is an experimental language for high-performance
parallel computing. Titanium has the syntax and seman-
tics of Java, although it compiles to native machine code
rather than virtual machine bytecodes. Titanium extends
Java with a global address space, where processes can ad-
dress, read, and write each other’s data [19].

By default, all references in a Titanium program are as-
sumed to be global. This makes it easy to build simple
programs that work. It is also a suitable choice for archi-
tectures with true shared memory (SMP’s), which Titanium
also supports. However, when tuning a program for speed,

programmers may selectively declare some references as lo-
cal (e.g. within inner loops). If the programmer knows that
a large array is always local, a local declaration causes the
Titanium compiler to produce more efficient code to traverse
the local array. The compiler checks explicit local qualifiers
statically, using rules similar to those presented here. For
example, if a method expects a local pointer as a parameter,
passing it a global pointer is a simple type error [27].

This design allows programmer to ignore locality issues
until the code is running correctly and then add local qual-
ifiers to speed things up. However, Titanium does not pro-
vide qualifier inference, and experience working with appli-
cation developers has shown that adding local qualifiers by
hand is not easy. Multidimensional arrays are bewildering;
static type errors are often reported far away from the site
of the offending declaration; and the more aggressive one
is at adding local qualifiers, the harder it is to maintain a
valid program in the long run.

Maintenance issues become dominant when dealing with
legacy code. Titanium incorporates a large portion of the
standard Java class library into its own runtime environ-
ment. The complete contents of the java.io, java.lang,
and java.util packages are available in Titanium. The Ti-
tanium compiler produces native code directly from Sun’s
Java source code for these packages. Incorporating the stan-
dard Java libraries is very desirable: the libraries represent
an enormous amount of work that does not need to be re-
peated.

However, this large body of existing code was written
for Java, not Titanium. The three packages comprise six-
teen thousand lines of source code without local qualifiers.
Nomne of this code uses Titanium’s cross-processor commu-
nication; but in the absence of explicit qualifiers, every vari-
able, field, and method parameter defaults to a global ref-
erence. Methods are assumed to return global references,
making it even more difficult for programmers to use local
references in their own code. Manually annotating this large
body of legacy Java code would be very tedious and would
need to be redone with each new release from Sun. Yet
without reducing these global references to local, it may be
impossible to achieve acceptable performance.

Practical local qualification has proven unexpectedly
difficult for programmers. Furthermore, formally defining

www.manaraa.com

how local qualification may be used in a sound manner has
been an ongoing source of bugs in the Titanium language
design. For these reasons, we have implemented a local
qualification inference engine, LQI, and made it available as
an optimization within the Titanium compiler.

5.2 Accommodating Titanium Features

Titanium contains many features not present in the lan-
guages presented earlier. However, these may all be han-
dled without difficulty; the core issues of type expansion and
pointer validity can be extended to accommodate a realistic
language. We briefly describe the highlights.

Titanium is object-oriented, with methods, inheritance,
and class- and interface-based polymorphism. A method’s
actual arguments must match its formals; thus, if a method
is observed to receive a global argument in any context, the
corresponding formal parameter is constrained to be global
within the method body. Titanium permits implicit coer-
cion from local to global, so a method can receive a local
argument in one context and a global elsewhere. The local
argument is widened at the point of the call.

Native methods, which are implemented by external C
code, are treated conservatively. Because the compiler has
no access to the implementation, it is never safe to change
either the formal parameter types or the return type of a
native method. This conservative approach can be taken
in any situation where only partial information is available.
For example, while the analysis is currently whole-program,
it could be made to accommodate separate compilation by
forcing conservative analysis at module boundaries.

Inheritance simply induces additional constraints be-
tween parent and child classes. A subclass is constrained
to use identical types for any fields inherited from its par-
ent. Interfaces and overridden methods are handled in the
same manner.

Arrays are treated similarly to references. An array of
references is akin to a pointer to n-tuple of homogeneously-
typed pointers. A particularly tricky issue is handling type
casts involving arrays. When an array is implicitly cast to
Object, we forbid changes to any “forgotten” qualifiers be-
low the topmost level of the array type. When an Object
is dynamically cast back to an array type, we also forbid
changes to any “remembered” qualifiers below the topmost
level. By holding the qualifiers fixed in both cases, we ensure
that any dynamic casts will behave identically in the orig-
inal and optimized programs. Otherwise, if qualifiers were
changed in the array declaration but not the explicit cast,
or vice versa, dynamic cast failures would occur where none
existed in the original program.

5.3 Local Qualification Inference for Titanium

As implemented in the Titanium compiler, the LQI opti-
mization is slightly less powerful than the inference system
presented in Section 4. The initial pass, which identifies ref-
erences that must remain valid, is omitted. Instead, it is
assumed that all references must be valid at all times. This
is safe, if overly conservative. In some cases, when data is
copied across processors but never subsequently used, the
validity assumption may force references to be global when
they could have been local invalid.

We have measured the effectiveness of LQI optimization
on several numerical kernels and applications. These in-
clude:

cannon Cannon’s algorithm for dense matrix multiplication.
We multiply a pair of random 256 x 256 matrixes.

lu-fact LU factorization for dense matrixes. We factor a
1024 x 1024 element random matrix, partitioned into
sixty four 128 x 128 element blocks.

sample Sample sort, a distributed sorting algorithm. We
sort 22 thirty two bit integer keys, with 64 keys per
sample.

gsrb The Gauss-Seidel Red Black algorithm for solving el-
liptic partial differential equations. We solve a 2048 x
128 element problem, partitioned into four 512 x 128
element patches across 100 full iterations.

pps A parallel solver for the Poisson equation with infinite
domain boundary conditions. We solve a 512 x 512
element problem partitioned into four 128 x 128 element
patches, with a refinement ratio of 16 between coarse
and fine grids.

In all cases, the programs were run in parallel on four
nodes of the Berkeley Network of Workstations (NOW) [1,
11]. Cross-processor reads and writes are implemented by
sending messages from node to node, with Active Messages
11 providing the lightweight fast messaging substrate [14].

Table 2 shows our experimental results. Note that for
cannon and lu-fact, two sets of measurements were taken.
The “manual” measurements reflect the code as originally
produced by the programmer. In both cannon and lu-fact,
the programmer had already deployed numerous explicit
local qualifiers in an effort to speed up the code. Thus,
the “manual” measurements reflect the additional speedup
available from local qualification opportunities that the
programmer missed, even in these relatively small kernels.
The “auto” variants use the same code but with all explicit
local qualifications removed. These reflect the opposite ex-
treme, where a programmer has relied completely upon LQI.

As one would expect, the manual variants show less rel-
ative benefit than their auto counterparts. For lu-fact, the
programmer has already added so many explicit qualifica-
tions as to leave little room for further improvement. How-
ever, the same programmer missed a few important spots
in cannon, even though the entire program is only 180 lines
long. LQI was able to discover and optimize these for a 5.7%
net speedup.

For both cannon and lu-fact, manual annotation plus
LQI is just slightly faster than LQI alone. Human program-
mers can add explicit casts that recover local qualifiers,
but which are only correct due to deep properties of the
program that static analysis cannot reveal. This affirms our
hypothesis that the best design combines selective manual
annotation with aggressive, sound inference.

The measurements as a whole show that improvement
varies widely from program to program. In a sense, LQI
identifies the portion of a calculation that takes place lo-
cally, and optimizes that to run using fast local pointers.
Thus, the benefit to be gained is directly dependent upon
the locality of the underlying algorithms. A program that
genuinely uses lots of cross-processor data will harbor few
opportunities for local qualification. Conversely, an algo-
rithm that has been specifically designed for scalable dis-
tributed operation will perform most work locally, and only
communicate very rarely. Such algorithms will show larger
speedups from LQI, and the relative speedup will become

www.manaraa.com

Effect on Speed Effect on Code Size
Benchmark Naive LQI Improvement Naive LQI Improvement
cannon manual 53.4 sec 50.3 sec 5.7% 43.5 MB 23.4 MB 46.2%
cannon auto 58.1 51.3 13.2% 43.0 23.6 45.2%
lu-fact manual 131.4 130.1 < 1.0% 78.1 44.6 42.9%
lu-fact auto 227.1 131.3 42.2% 87.4 44.9 48.7%
sample 29.2 21.4 26.6% 40.5 20.3 49.8%
gsrb 16.0 15.7 1.9% 99.1 64.4 35.0%
PPSs 92.2 40.3 56.3% 545.0 309.8 43.2%

Table 2: Titanium benchmark performance.

greater when working on increasingly large problems. This
is particularly evident in pps, a fairly new algorithm that
is specifically designed for scalable distributed operation. It
performs relatively more local calculations than gsrb, but is
thereby able to greatly reduce the amount of cross-processor
communication [3]. Because communication is so costly, this
gives much better performance in general, and meshes par-
ticularly well with LQI, for an impressive speedup. The
anecdotal experience of programmer who wrote pps is illu-
minating. When asked if he had previously put in many ex-
plicit local qualifiers, he replied “Yes, but apparently not
anywhere that it mattered.” LQI’s analysis is more thor-
ough and 56.3% more effective.

The primary concern of most Titanium programmers is
execution speed. However, LQI also makes code smaller.
As Titanium is implemented on the NOW, local pointers
require many fewer instructions to use. Table 2 shows that
LQI makes the benchmarks’ code segments 35% to 50%
smaller. These sizes exclude code for the standard Java
classes, like String or Math. If the standard classes are in-
cluded as well, the overall reduction is smaller, from 13% to
18% for a complete executable.

6 Related Work

Nearly one hundred distributed programming languages
were identified ten years ago [2], and many more have ap-
peared since. We highlight some representative examples
of approaches previously taken to the local/global pointer
problem.

Olden adds parallelism to C, focusing on dynamic struc-
tures augmented with compiler-directed software caching
and migration [8,9,24]. All Olden pointers are global, so it
is never possible to see an invalid local pointer from another
processor’s address space. However, pointer operations re-
quire four extra instructions to test the processor ID and
decode the machine address. Data flow analyses can elim-
inate some redundant checks, but address decoding always
adds one instruction of overhead. The inference described in
this paper could complement these analyses, using a faster
(unencoded) representation for those pointers that are stat-
ically guaranteed to be local.

Emerald also focuses on fine-grained object mobility [20].
While local and global are not distinguished at the source
level, selected object fields may be declared as attached. Be-
cause an object and its transitively attached fields always
live in the same address space, the compiler can use fast
local addresses to implement attached fields. This is a safe
alternative to the techniques presented here, but may re-
quire more data motion to keep attached fields colocated
as objects migrate. Java remote method invocation (RMI)

10

uses a similar transitive closure for object serialization.

Cid [23], Split-C, and Titanium explicitly distinguish lo-
cal and global in the source language. Cid uses a single type
for all global pointers, the distributed equivalent of void *.
Split-C assumes all pointers local unless declared otherwise,
while Titanium references default to global. Cid and Split-C
make little effort to enforce soundness; while this is consis-
tent with C’s low-level approach, the difficulty of distributed
debugging compounds the standard issue of wild pointers.
Titanium attempts to be as safe Java, and does address some
of the issues highlighted in Section 3. However, it does not
do so consistently or completely, and one can easily craft un-
sound expressions. Those remaining holes can now be closed
in light of this research.

7 Conclusions and Future Work

Distributed computing environments have distinct notions
of local and remote memory. However, explicitly distin-
guishing between pointer types creates several opportuni-
ties for unsoundness. We have described a suite of type
systems that clarify these problems and demonstrate how
they can be avoided. A simple, asymptotically efficient type
inference system can automatically insert an optimal set of
qualifiers, reducing the burden on the programmer. Exper-
iments with the Titanium language show that inference can
greatly improve performance, particularly for codes specifi-
cally designed for scalable distributed execution.

The systems presented here could be enhanced in three
important ways. First, the assumption of a two-level mem-
ory could be generalized to n levels of partitioned address
spaces. This may become important as simple distributed
uniprocessors give way to clusters of SMP’s; clusters of clus-
ters, and other deep parallel hierarchies. Second, the model
should be extended to include mobile code, an area of grow-
ing interest. A simple approach may be to require that only
robust free variables appear in any mobile closure, but more
study is needed. Finally, polymorphic analysis of functions
could be beneficial. For example, this would let Titanium’s
LQI automatically produce both local and global variants
of standard container classes like Vector or Hashtable, for
potentially larger improvements to performance.

References

[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson. Searc-
ing for the sorting record: Experiences in tuning NOW-
sort. In Symposium on Parallel and Distributed Tools,
pages 124-133, Welches, Oregon, Aug. 1998. Associa-
tion for Computing Machinery.

www.manaraa.com

(2]

[4]

[9]

[10]

[11]

[12]

[13]

H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Pro-
gramming languages for distributed computing sys-
tems. ACM Computing Surveys, 21(3):261-322, Sept.
1989.

G. T. Balls. A Finite Difference Domain Decomposi-
tion Method Using Local Corrections for the SOlution
of Poisson’s Equation. PhD thesis, Department of Me-
chanical Engineering, University of California at Berke-
ley, 1999.

S. T. Barnard and H. D. Simon. A fast multilevel imple-
mentation of recursive spectral bisection. In Proceed-
ings of the Sizth STAM Conference on Parallel Process-
ing for Scientific Computing, pages 711-718, Philadel-
phia, 1993. STAM.

J. Barnes and P. Hut. A hierarchical O(N logN) force-
calculation algorithm. Nature, 324(4):446-449, Dec.
1986.

G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G.
Plaxton, S. J. Smith, and M. Zagha. A comparison
of sorting algorithms for the Connection Machine CM-
2. In Proceedings of the 3rd Annual ACM Sympo-
stum on Parallel Algorithms and Architectures, pages
3-16, Hilton Head, South Carolina, July 21-24, 1991.
SIGACT/SIGARCH.

W. L. Briggs. A Multigrid Tutorial.
Philadelphia, 1987.

M. C. Carlisle. Olden: Parallelizing Programs with
Dynamic Data Structures on Distributed-Memory Ma-
chines. PhD thesis, Department of Computer Science,
Princeton University, June 1996.

M. C. Carlisle and A. Rogers. Software caching and
computation migration in Olden. In Proc. 5th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’95, pages 29-38, Santa
Barbara, California, July 1995. Princeton.

J. Choi, J. Demmel, I. Dhillon, and J. Dongarra.
ScaLAPACK: A portable linear algebra library for dis-
tributed memory computers design issues and per-
formance. Lecture Notes in Computer Science, 1041,
1996.

SIAM Books,

D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
B. Chun, S. Lumetta, A. Mainwaring, R. Martin,
C. Yoshikawa, and F. Wong. Parallel computing on the
Berkeley NOW. In 9th Joint Symposium on Parallel
Processing, Kobe, Japan, 1997.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krish-
namurthy, S. Lumetta, S. Luna, T. von Eicken, and
K. Yelick. Introduction to Split-C. Computer Science
Division, Department of Electrical Engineering and
Computer Science, University of California at Berke-
ley, version 1.0 edition, Apr. 1996.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, T. von Eicken, and K. Yelick. Par-
allel programming in Split-C. In IEEE, editor, Proceed-
ings, Supercomputing '93: Portland, Oregon, November
15-19, 1993, pages 262-273, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 1993. IEEE Com-
puter Society Press.

11

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. E. Culler and A. Mainwaring. Active message appli-
cation programming interface and communication sub-
system organization. Technical Report UCB CSD-96-
918, Computer Science Division, Department of Elec-
trical Engineering and Computer Science, University of
California at Berkeley, Oct. 1996.

J. S. Foster, M. Fiahndrich, and A. Aiken. A Theory of
Type Qualifiers. In Proceedings of the 1999 ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 192 203, Atlanta, Georgia,
May 1999.

J. Gosling, B. Joy, and G. Steele. The Java™ Language
Specification. The Java™ Series. Addison-Wesley,
Menlo Park, California, 1996.

L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. Journal of Computational Physics,
73:325-348, 1987.

F. Henglein. Dynamic typing. In B. Krieg-Brick-
ner, editor, Proc. European Symp. on Programming
(ESOP), Rennes, France, pages 233 253. Springer-
Verlag, Feb. 1992. Lecture Notes in Computer Science,
Vol. 582.

P. N. Hilfinger. Titanium Language Working Sketch,
draft version 0.22w edition, June 14 1999.

E. Jul, H. Levy, N. C. Hutchinson, and A. P. Black.
Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1):109 133, Feb.
1988.

A. Krishnamurthy. Analyses and optimizations for
shared address space programs. Ph.D. qualifying ex-
amination talk, Nov. 1995.

R. Milner, M. Tofte, and R. Harper. The Definition
of Standard ML. The MIT Press, Cambridge, Mass.,
1990.

R. S. Nikhil. Parallel symbolic computing in Cid. Lec-
ture Notes in Computer Science, 1068, 1996.

A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J.
Hendren. Supporting dynamic data structures on
distributed-memory machines. ACM Transactions on
Programming Languages and Systems, 17(2):233-263,
Mar. 1995.

P. Ruzicka and I. Privara. An almost linear Robinson
unification algorithm. Acta Informatica, 27(1):61 71,
1989.

K. Yelick, D. Culler, and J. Demmel. Programming
support for clusters of multiprocessors (CLUMPS).
Talk presented at Lawrence Livermore National Lab-
oratories, Mar. 1997.

K. Yelick, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,
and A. Aiken. Titanium: a high-performance Java
dialect. In ACM Workshop on Java for High-
Performance Network Computing, pages 1-13, Stan-
ford, California, Feb. 1998. Association for Computing
Machinery.

www.manaraa.com

A Operational Semantics and Soundness

In this appendix we prove that the type checking system pre-
sented in Section 3.3 is sound with respect to an operational
semantics. We focus on the sequential subset of the lan-
guage, which includes everything except transmit expres-
sions. Because the semantic problems with local and global
pointers are the representation and movement of pointers
between address spaces, dealing with concurrency compli-
cates the semantics while also obscuring the core issues. The
language subset we work with is:

Jlz| fe]te]| le| widen e |

e1;er | e1:=ex | {e1,e2) | @le | @2€

e =

Furthermore, we restrict primitive functions to be mappings
from integers to integers. This simplifies the proof without
hiding any core issues.

Al

Semantic Domains

We use the semantic domains given in Figure 15. The treat-
ment of stored pairs is unusual and is explained below.

M the set of machines
A the set of local addresses
Id the set of identifiers
T the set of all types
G =MxA global addresses
V=J4+A4+G+V xV values
SV =J+A4+G+ Ax A values that can be stored
Store = G —» SV
Fun = J—J
Env = Id - Fun+V

Figure 15: Semantic domains.

We use the following conventions for naming elements of
the semantic domains.

! .
m,mo,m ,... € M a machine
!
v,V0,0 ,... EV a value
!
sv, svg, sv ,... € SV a storable value
!
S, 80,5 ,... € Store a store
E € Env the environment
! .
e,e0,€ ... a source expression
.. N .
4,20, ,... € J an integer
! .
9,90,9,..- € G a global pointer
! .
a,ap,a’,... €A a local pointer

In the operational semantics, the use of 4, a, or g in the
hypothesis should be read as a constraint, not a comment.
That is, a hypothesis e — ¢ means that e must evaluate to
an integer for the rule to be applicable.

We write global addresses as a pair (m,a) of machine
and local address. Global addresses can be distinguished

12

from pair values (v1,v2) by context, as machines cannot be
a component of pairs.

A store is a finite function from global addresses to val-
ues. When a value is created a new location in the store
must be allocated. The function

new : Store x M — A

takes a store and a machine m and returns a fresh local
address. We also use a shorthand

newn(m,S) = (ai,...,an)
to simultaneously obtain n distinct fresh addresses in a local
memory. By “fresh” we mean that new satisfies:

new(m,S) =a = a ¢ dom(ra.S((m,a)))
In other words, the new address is not already in use on
machine m.

An unusual aspect of the domains is the treatment of
pairs. Unboxed pairs are treated as values, but only pairs of
addresses are placed in the store. Because the operations @1
and @2 take the addresses of pair components, and because
these addresses are then first-class values, we must model
the location in the store of the components of the pair as
well as the pair itself. This is done most directly by simply
storing the two components of the pair at different addresses,
rather than more usual solution of representing the entire
pair value with a single address. To maintain the knowledge
that these two components represent a pair we store the pair
of addresses at the address of the pair itself.

For example, consider an unboxed pair consisting of two
integers (5, 6). Taking the address 1(5, 6) forces the pair to
be placed in the store S. Three new locations on the local
machine m are allocated to store the pair:

S((m,a1)) = (a2, as)
S((m,a2)) = 5
S((m,az)) = 6
The value of 1(5,6) is the pair address a;. Selecting the

address of the first field @1 1(5, 6) has the value as.

Nested pair values are stored recursively when boxed.
Thus the expression 1((5,6),7) allocates five new locations
in the local store for the three integers and two pairs:

S((m,ao)) = (a1, a4)
S((m,a1)) = (a2, as)
S((m,a2)) = 5
S((m,az)) = 6
S((m,as)) = 7

In practical language implementations only the “leat” values
5, 6, and 7 are stored and the knowledge of the grouping of
the addresses into pairs is maintained implicitly inside the
compiler. The stored pair values are the semantic represen-
tation of this compiler knowledge.

Unboxing a nested pair is the inverse of boxing a pair:
any stored address pairs are traversed recursively to recreate
the unboxed value. In the example just given | 1((5, 6),7) is
the value ((5,6),7).

www.manaraa.com

A.2 Operational Semantics The rules for widening, sequencing, and pairing are

traightf d.
Operational rules have the form: straightiorwar

m,So,E"E—)U,Sl m,Sg,El—e—)a,Sl
m, So, E F widen e — (m,a),S:

which should be read “on a given machine m in store Sp

and environment E, the expression e evaluates to the value
”

v and produces a new store Sl.) o m, So, E F e — v, S

The rules for integer, variable, and function application

. . m,S1,E = 62—)1)2,52
expressions are simple.

m,S0,E F e1;es— vy, 5

E(z)=veV

m, S, E F i—>i,8 m S EF x-S m, So, B er = w1, 51
’I’TL,Sl,E = 62—)1)2,52

m,So,E = (61,62) — (1)1,1)2),52

’I’TL,SQ,E F 6—)i,51

E(f)y=¢ € Fun ¢@i) =1 The rule for assignment is complicated by the semantics

m,So,E - fe—1,51 of assigning into pairs. Assume a is a boxed local pointer to

a pair of integers. Then the assignment a :=(1, 2) overwrites

The rules for referencing and dereferencing values are the the two integers of the pair in the store with the integers 1
most elaborate. We need a number of auxiliary functions. and 2. This semantics corresponds directly to the structure
Let a - (b,c) = (a,b,c) be a tuple append operator. Append assignment primitive in the C programming language. The
may also be applied on the right (b,c) - a = (b, ¢,a) and to auxiliary functions LeafAddresses and LeafPaths in Figure 16
sets of tuples: provide the mechanism for matching addresses with the val-
ues to be assigned. Note that in the case where S({m,a))

a-B = {a-blbe B} and v are not pairs, the sets of leaf addresses and leaf values

. ively.
A path is a tuple with elements appearing in an order de- are just {{{m, a))} and {{v)} respectively

scribed by the regular expression (/ | \)*sv. That is, a path

consists of a sequence of / and \, except for the last ele- m,So, E F e1 = a,S

ment which is a storable value. A path describes a sequence m,S1,E F ex > v, S

of selections within a pair (taking either the left or right LeafAddresses(Sa, (m,a)) = {p1-g1,...,Pn - gn}
component) to reach a storable value. We write ¢, to,¢, ... LeafPaths(v) = {p1 - sv1,...,pn - SUn}

to denote paths.
A pure path is a tuple with elements appearing in an or-
der described bu the regular expression (/| \)*. We write

S3 = S2[g1 < SV1,...,Ggn ¢ SU]
m,So, B F e1 :=ea = v,S3

p,po, P, ... to denote pure paths. Figure 16 defines a num-
ber of functions on paths and values. m,So,E F e1 — g, 5
Taking the address of any value but a pair simply boxes m.S1. E F ey — v, S,
the value by allocating a local address on the current pro- LeafAddresse’s(Szz 9) = {m '971 Do Gn}
cessor and storing the value at that address. As described LeafPaths(v) - . e En o
above, the components of pairs are recursively boxed. eafPaths(v) = {p1 - sv1,...pn - svn}
S3 = S2[g1 < SV1,...,gn ¢ SU]
m,So, E F e— v, 5 m, S0, E F e1:=ex > v, 53
Paths(v) = {p1,. n;g:g;:;lslfi?;h ,piansfn} where pr = () The final four rules implement the @n operators, which
svi = {a;, ar) where pi- /= p; and p;- \= pi, for 1 <i <1 return the addresses of pair components.
Sa = S1[(m,a1) < sv1,...,(m,an) < sv,]
m,So, E F Te—ai,Ss m,So, E F e—a,51 Si((m,a)) = (a1,a2)
| m,So,E F @le—ai,S:
For dereferences there are two cases. For a dereference of
a local pointer, we use the auxiliary function Value defined m,So,E F e—a,S S1({(m,a)) = (a1,a2)
in Figure 16 to unbox the value. For a dereference of a global m, S0, E F @2¢ — az, 51

pointer we use auxiliary function Wide Value, which widens
widens any local pointer appearing at the top level but is

otherwise identical to Value. m,So, B F e— (m',a),S1 Si({(m,a)) = (a1, as)
m,So, B - @le— (m' a1),S

m,So, E F e—>a,5
m,So, E F e — Value(S1, (m,a)), S1

m,So, B F e— (m',a),S1 Si({(m,a)) = (a1, as)
m, S0, B F e—g,5 m,So, B F @e— (m' a2), S
m,So, E F |e— WideValue(S1,g),S1

13

www.manaraa.com

Paths(v) = {{(>} U (/ -Paths(v1)) U (\ -Paths(vz))

{()}
LeafPaths(v) =

LeafAddresses(S, (m, a))
{((m,a))}

(Value(S, (m, S({m,a1)))),
Value(S, (m, S({(m,a2)))))

Value(S, (m, a))

5((m, a))

Wide Value(S, (m,a)) = {(m,a’)

Value(S, (m,a))

if v = (v1,v2)
otherwise

{z |z € Paths(v) Nz =p-sv}

(/ -LeafAddresses(S, (m,a1)))
U (\ -LeafAddresses(S, (m,as2)))

if S((m,a)) = (a1, a2)

otherwise

if S({m,a)) = (a1, as)

otherwise

if S((m,a)) =d
otherwise

Figure 16: Auxiliary functions for boxing, unboxing, and assignment.

A.3 Soundness

Before we can prove type soundness we need to state what
representation we expect the values of types to have. Fig-
ure 17 defines a predicate Consistent that recursively com-
pares a type with a value and a store to check that the
value matches requirements of the type. We say that a
store S on machine m is consistent with value v and type
7 if Consistent(m, S, (v, 7)) is true. We extend consistency
to apply to sets of values and types as well. If U is a set
of value/type pairs, then Consistent(m,S,U) if and only if
Consistent(m, S, u) for all uw € U.

There is a another soundness issue we must account for.
Our language allows pointer aliasing, and the language will
be unsound if stored pointer values can be given different
types by different aliases. In particular,

if x : boxed local valid boxed local invalid 7

and gy : boxed local valid boxed local valid 7

and z and y happen to refer to the same pointer, then the
type system will permit an assignment of an invalid pointer
into x, thereby giving y a value that disagrees with its type.
The Consistent predicate cannot detect this situation; to
check this it is necessary to compare all the different typings
of each memory address through all of its aliases to ensure
they agree.

The function StoreType in Figure 18 captures the needed
property. A StoreType maps mutable locations to types, L,
or T. The ordering of elementsis L. < 7 < T, with all types 7
being incomparable. The least upper bound of two elements
is the smallest element that is > to both. The least upper
bound of two functions is defined point-wise:

(fU) = fl)u f(=)

If a store typing st has the property that st(g) = T, then
the location g is typed differently by two or more aliases of
the location; in this case we say the store typing st is not
uniform. If there is no g such that st(g) = T then all of the
aliases of all mutable locations agree on the types of those
locations: the store typing is uniform. Predicate Uniform
in Figure 18 formalizes this notion.

Data that is immutable need not have the same typing for
every alias. StoreType does not require the top-level pointer

14

encountered in its traversal of a value to have a uniform view
everywhere. This pointer is not itself mutable, only the data
it points to is mutable.

Finally, the full notion of soundness we need simulta-
neously confirms that the execution and type environments
also agree. For this purpose it is useful to combine the two
environments pairwise, matching each variable’s value with
its corresponding type:

EwA = {(E(@),A()€l|x e dom(E)N dom(A)}
For the soundness proof we require that the execution and
type environments agree from the outset; that is, dom(F) =
dom(A).

Because we do not have any iteration constructs in our
small language, all computations are terminating. We can
use this fact to sidestep the usual issues with showing type
soundness even for infinite computations. We simply show
that if an expression has any type then computation never
goes wrong, provided the computation is performed in an
environment consistent with the typing assumptions.

A.4 Main Soundness Theorem

Theorem 1. Let A F e : 7. Assume that m is a machine,
S is a store, and E is an environment such that dom(E) =
dom(A). Tf initially

Uniform(Store Type(m, S, E nx A))
then

m,S,E F e—v5
A Consistent(m, S', (E x A)U {(v,7)})

i.e., computation succeeds and ends in a state where all
values have types consistent with the store.

The proof is omitted from this summary, but the
interested reader can find the complete version at
<http://www.cs.berkeley.edu/Research/Projects/
titanium/popl-00/>.

www.manaraa.com

u = VvV xT
v e M
u, ug,u’ ... € u
Consistent : M x Store x U — boolean
Consistent(m, S, (i,int)) <= true
Consistent(m, S, (a,boxed local invalid 7)) <= true
Consistent(m, S, (g, boxed global invalid 7)) <= true
Consistent(m, S, ((v1,v2),(11,72))) <= Consistent(m, S, (v1,71))
A Consistent(m, S, (v2,T2))
Consistent(m, S, (a,boxed local valid int)) <= S((m,a)) is defined
A Consistent(m, S, (S({m,a)), int))
Consistent(m, S, (a,boxed local valid boxed w p 7)) <= S({(m,a)) is defined
A Consistent(m, S, (S({(m,a)), boxed w p 7))
Consistent(m, S, (a,boxed local valid (11,72))) <= S({(m,a)) = (a1,a2)
A Consistent(m, S, (a1, boxed local valid 7))
A Consistent(m, S, (a2, boxed local valid 72))
Consistent(m, S, {(m',a),boxed global valid int)) <= S((m’,a)) is defined
A Consistent(m’, S, (S({m',a)), int))
Consistent(m, S,{(m',a),boxed global valid boxed w p 7)) <= S((m',a)) is defined
A Consistent(m’, S, (S({m',a)),boxed w p 7))
Consistent(m, S, {((m',a),boxed global valid (11,72))) <= S((m',a)) = (a1,as)
A Consistent(m, S, ((m',a1),boxed global valid 7))
A Consistent(m, S, ((m', a2),boxed global valid o))
Consistent(m, S,U) <= /\ Consistent(m, S, u)

uelU

Figure 17: Consistent stores.

15

www.manharaa.com

ST = G- (r+L+T)

StoreType : M x Store xU — ST
Store Type(m, S, (i, int)) = Az. L
Store Type(m, S, (a,boxed local invalid 7)) = Az. L
Store Type(m, S, {(m’, a),boxed global invalid 7)) = Az L
Store Type(m, S, ({vi,v2),{T1,72))) = Store Type(m, S, (v1,71))

LI Store Type(m, S, (va, T2))

Store Type(m, S, (a,boxed local valid int)) = Az. L [(m,a) + int]
U Store Type(m, S, (S((m, a)), int))

Store Type(m, S, (a,boxed local valid boxed w p T)) = Az. L [(m,a) < boxed w p 7|
u Store Type(m, S, (S((m, a)),boxed w p T))

Store Type(m, S, (a,boxed local valid (71,72))) Ax. L [(m,a) < (11,72)]

Store Type(m, S, (a1,boxed local valid 71))

C C

Store Type(m, S, (a2, boxed local valid 72))

where S((m,a)) = (a1, a2)

Store Type(m, S, {(m’, a), boxed global valid int)) = Az. L [(m,a) + int]
U Store Type(m’, S, (S((m',a)), int))

Store Type(m, S, ((m', a),boxed global valid boxed w p 7)) = Az. L [(m',a) < boxed w p 7|
u Store Type(m', S, (S((m',a)),boxed w p 7))

Store Type(m, S, ((m’, a),boxed global valid (11,72)))

Az, L [(m/,a) «+ (11, 72)]
Store Type(m, S, ((m’,a1), boxed global valid 7))

C C

Store Type(m, S, ((m’, as), boxed global valid 73))

where S({(m',a)) = (a1, a2)
Store Type(m, S, U) = |_| Store Type(m, S, u)
uelU

Uniform : ST — boolean
Uniform(st) <= Jg.st(g) =T

Figure 18: Uniform store typings.

16

www.manharaa.com

