
www.manaraa.com

Type Systems for Distributed Data Strutures �Ben Liblitliblit�s.berkeley.edu Alexander Aikenaiken�s.berkeley.eduDepartment of Eletrial Engineering and Computer SieneUniversity of California, BerkeleyBerkeley, CA 94720-1776AbstratDistributed-memory programs are often written using aglobal address spae: any proess an name any memoryloation on any proessor. Some languages ompletely hidethe distintion between loal and remote memory, simpli-fying the programming model at some performane ost.Other languages give the programmer more expliit ontrol,o�ering better potential performane but sari�ing bothsoundness and ease of use.Through a series of progressively riher type systems,we formalize the omplex issues surrounding sound ompu-tation with expliitly distributed data strutures. We thenillustrate how type inferene an subsume muh of this om-plexity, letting programmers work at whatever level of detailis needed. Experiments onduted with the Titanium pro-gramming language show that this an result in easier de-velopment and signi�ant performane improvements overmanual optimization of loal and global memory.1 IntrodutionWhile there have been many e�orts to design distributed,parallel programming languages, none has been ompletelysatisfatory. Many approahes present the illusion of a sin-gle shared, global address spae. While easy for program-mers to understand, this approah hides the real strutureof memory, making it diÆult to exploit loality of data. Inomplex appliations where loal memory aesses may beorders of magnitude faster than remote aesses, this anseriously harm performane, development time, or both.Another approah is to reveal the full distributed mem-ory hierarhy at the language level. A popular model is toallow a mixture of global and loal pointers: the former spanthe entire global address spae, while the latter only addressmemory that is physially oloated with a given proes-sor. This supports globally shared data strutures while stillallowing eÆient implementation of algorithms spei�allystrutured for distributed parallel exeution [4{7, 10, 17, etal ℄.�This researh was supported in part by NASA Contrat No.NAG2-1210 and an NDSEG fellowship.To appear in POPL '00.

Historially, programming languages that expose muta-ble loal and global addresses have been unsound. Designinga sound type system whih allows loal and global pointersturns out to be a subtle problem. Exposing loal/global alsoplaes an additional burden on the programmer, who maybe fored to attend to the details of memory layout even insetions of ode that are not performane ritial.This paper makes three prinipal ontributions:� Through a progression of sound type systems, we illus-trate and larify the semanti issues surrounding loaland global pointers.� We present a type inferene system that is apable ofompleting a program with inferred loal/global anno-tations, thereby relieving the programmer from man-aging address spaes in muh or all of the ode.� We present experimental results showing that this in-ferene algorithm improves program performane sig-ni�antly, simpli�es development, and does a better jobthan hand-optimization by humans.The remainder of this paper is strutured as follows.Setion 2 o�ers a primer on the ommon terminology withwhih we disuss distributed address spaes and highlightssome of the performane osts of simpler models that treatdistributed memory as though it were shared memory. InSetion 3 we develop a series of small languages and typesystems that odify sound omputing with distributed mu-table data strutures. The more expressive systems are alsomore omplex; Setion 4 shows how type inferene an sim-plify programming while retaining the full power of the typesystem. We have applied these priniples to the Titaniumprogramming language, and report the results of our exper-iments in Setion 5. Setion 6 reviews related work. Weonlude in Setion 7 by summarizing our �ndings, and dis-ussing diretions for future researh.2 BakgroundWhen desribing interonnetions between alloated bloksof data, we use the term pointer, whih reinfores the ideathat we are disussing very low level operations. Althoughpointers an implement Standard ML ref's [22℄ or Java ref-erenes [16℄, pointers are more primitive.Our distributed memory model is an expliit two-levelhierarhy with loal and global memory. Loal memory isphysially oloated with a proessor. A system with six-teen proessors has sixteen distint loal memories. A loal1
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if (p.proessor == MyProessor)result = *p.address;elseresult = RemoteRead(p.proessor, p.address);Figure 1: Dereferening a global pointer. Beause\result" may reeive its value from an opaque funtion all,the ompiler is unlikely to be able to e�etively optimize anyode that uses the resulting value.CM-5 T3Dfuntion 2.8 �se/edge 1.19inline 2.0 0.71optimized 1.3 0.66narrow 1.15 N/ATable 1: Costs of global pointers to loal data. \Fun-tion" uses global pointers and requires a funtion all forevery read or write. \Inline" inlines global pointer ode di-retly at the point of use. \Optimized" uses extensive manualoptimization and likely represents the theoretial best perfor-mane possible for global referenes. \Narrow" uses simplepointers, and represents a level of performane only possiblewith true, physially shared memory.pointer enodes an address within one loal memory andorresponds to a pointer or memory address in standardlanguages. Loal pointers do not travel well; a loal addressformed on one proessor is meaningless elsewhere.Global memory is the union of all loal memories. Ifwe assume that proessors are uniquely numbered, then aglobal pointer enodes a pair hproessor; addressi, with ahome proessor and an address within that proessor's lo-al memory. Global pointers have a di�erent representationfrom loal pointers and are more ostly to use. Manipulatingremote memory may involve speial mahine instrutions,trapping into the operating system, or funtion alls into amessage-passing library. The exat mehanism is irrelevant.What matters is that global and loal pointers have di�erentrepresentations and are manipulated using di�erent opera-tions.While dereferening a global pointer to another proes-sor's memory an be extremely slow, even a global pointerinto loal memory generally inurs a performane penalty.As Figure 1 illustrates, dereferening a global pointer thatturns out to be loal may entail omparing two values, ig-noring a branh to the remote feth lause, derefereningthe loal address, and branhing to the end of the entireonditional. The presene of a branh, ombined with thepossibility of a funtion all, may make it diÆult for anoptimizing ompiler to improve ode using the result of astatially global dereferene.Benhmarking quanti�es these onerns. A Split-C [13℄benhmark was run using various strategies to implementglobal pointers. The benhmark, EM3D, repeatedly walksaross an irregular bipartite graph performing a simple al-ulation. We an estimate the ost of global pointers to loaldata by omputing the average time required per edge whenall data is stored loally. Table 1 shows times olleted ona Thinking Mahines CM-5 and partial times olleted on aCray T3D. These �ndings were originally presented in [21℄and [26℄, respetively.The benhmark reveals that the performane ost of us-ing global pointers for loal data is signi�ant. Even when

the ode for reading and writing through global pointers ref-erenes is inlined, the CM-5 shows nearly a 75% slowdownompared with simple pointers. This is largely due to lostopportunities for optimization. Extensive manual optimiza-tion inluded reloating ode into the \loal" lause of theloality test to avoid a branh. Suh heroi e�orts bring per-formane to within 13% of simple pointers; the di�erene isprobably due to less e�etive register use and the inreasedtime to move larger amounts of data around in memory.Thus, high performane parallel ode must aknowledgethe distributed nature of memory. Where data struturesgenuinely span proessor boundaries, global pointers are en-tirely appropriate. But when stati information an provethat data is always loal, global pointers are needlesslyostly.3 A Progression of Type SystemsWe present a suite of three languages and type systemsthat o�er both global and loal pointers, illustrating the keysoundness issues that arise when manipulating distributeddata strutures. All three systems have been redued to es-sentials to more learly illuminate the novel issues. Theseare not languages in whih one would program diretly.Rather, these languages should be onsidered as just barelyabove the level of primitive mahine addressing.Our foremost onern is distributed data, not mobileode. Therefore, none of the languages we desribe ontains� expressions, let bindings or any other faility for introdu-ing new funtions, variables, or losures. Rather, we assumea �xed set of named funtions and variables available in aninitial environment. Funtions are not �rst-lass; funtiontypes are not data types, and funtion names only appeardiretly applied to arguments. In Setion 7 we briey on-sider extensions allowing �rst-lass funtions; for now, wefous on data.Similarly, we omit the details of a parallel semantis. Asingle language onstrut, the unary transmission operator,represents an expliit transfer of information from one pro-essor to another. An expression of the form \transmit e"should be read as evaluating expression \e" on one proes-sor, then transmitting the result to a di�erent proessor.The result of a transmit expression is the value as seen onthe reeiving proessor. This is the only expliit ommu-niation primitive; all other data is exhanged impliitly,via global pointers. The presentation here is deliberatelysomewhat informal. An operational semantis and sound-ness proof for the most omplex type system are presentedin the appendix.The �rst language ontains loal and global pointers witharbitrary levels of indiretion but without updates. The se-ond language introdues an assignment operator for destru-tive updates. The third language adds pairs with updatable�elds, whih model the omposite reords, objets, or datastrutures of higher level languages.3.1 System I: Simple PointersOur �rst language ontains integers, loal and global point-ers, and basi pointer operations. It has neither destru-tive assignment nor ompound data types; these are addedin setions 3.2 and 3.3, respetively. Expression and typegrammars are given in Figure 2. Figure 3 gives type hek-ing rules. A type environment, A, enapsulates informationabout externally de�ned variable and funtion names.2
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J ::= integer literalse ::= J j x j f e j " e j # e j widen e j transmit e� ::= int j boxed ! �! ::= loal j globalFigure 2: Expressions and types I. Expressions are givenby e, while � represents expression types.

A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed loal �A ` e : boxed loal �A ` # e : �A ` e : boxed global �A ` # e : expand(�)A ` e : boxed loal �A ` widen e : boxed global �A ` e : �A ` transmit e : expand(�)Figure 3: Type heking rules I.

proessor 0 proessor 1x '/ " 5
��#x '/ 5Figure 4: Situation requiring type expansion.To disuss pointers and pointer operations, we work withboxed and unboxed values. As is standard, types representunboxed values unless expliitly boxed. One may take avalue's address using the \"" indiretion operator, so while\5" is a pattern of bits representing �ve, \" 5" is a loalpointer to a memory loation holding the value �ve. Weuse \boxed" to desribe pointer types, augmented with awidth quali�er to distinguish global from loal pointers. The\widen" operator widens a loal pointer to global. Hene:5 : int" 5 : boxed loal int" " 5 : boxed loal boxed loal intwiden " " 5 : boxed global boxed loal intThe \#" dereferening operator retrieves the value ad-dressed by a pointer. Dereferening a loal pointer works asexpeted, essentially stripping o� an outer level of boxing.Dereferening a global pointer is more subtle.3.1.1 Impliit Type ExpansionThe diÆulty with global pointer dereferening is illustratedin Figure 4. Dotted lines mark loal memory boundaries; inthis ase, we have two proessors and therefore two loalmemories. Proessor 1 has onstruted a loal pointer toa memory loation storing the value �ve. We indiate loalpointers using a single arrow. Proessor 0 has a variable x oftype boxed global boxed loal int: a global pointer to aloal pointer to an integer. We use double arrows to indiateglobal pointers. A na��ve dereferene of x would simply ex-trat the loal pointer value " 5. However, that loal pointeris meaningless in proessor 0's loal address spae. Rather,as the �gure suggests, the loal pointer addressed by x mustbe widened, so that # x is global as well. The new globalpointer's home proessor is 1, while its address on proessor1 is the same as the address expressed by " 5.Widening is only needed when an operation ould ausethe value of a loal pointer to ross proessor boundaries.Thus, if y : boxed global int is a global pointer to an inte-ger, then # y : int is the value of that integer. Similarly, ifz : boxed global boxed global int is a global pointer to aglobal pointer to an integer, then # z : boxed global intwould traverse one level of indiretion, yielding a globalpointer to an integer. Widening is required when transmit-ting a loal pointer: if " 5 has type boxed loal int, thentransmit " 5 must have type boxed global int, or else thereeiving proessor would be left holding a loal pointer intothe wrong address spae. But transmit 5 requires no speialmanipulation, beause integers travel safely aross proessorboundaries.3
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expand(boxed loal �) , boxed global �expand(�) , � otherwiseFigure 5: Type manipulating funtions I.J ::= integer literalse ::= J j x j f e j " e j # e j widen e j transmit e je ; e j e := e� ::= int j boxed ! �! ::= loal j globalFigure 6: Expressions and types II. Relative to Figure 2,expressions now allow sequening (;) and assignment (:=).The expand funtion, used in the �nal two type rules,is given in Figure 5. It widens loal pointers to global, butleaves other types unhanged. Simple though this may seem,real parallel programming languages do not neessarily getthis right. Split-C, for example, makes no e�ort to preventproessors from seeing eah other's loal pointers. In aseslike Figure 4, the programmer is expeted to extrat theproessor number from x and manually ombine that withthe loal pointer at #x to produe a valid global pointer.Forgetting to do so eliits no warning from the ompiler;the program simply ontains a wild pointer [12℄.3.2 System II: Assignable PointersWe now extend the language with destrutive assignmentthrough pointers. An updated grammar appears in Figure 6.To help support assignment we have also added sequening.Given a pointer to some memory loation and a ompat-ible value, the new \:=" assignment operator writes a newvalue into the pointed-to loation, replaing what may havebeen stored there before. The pointer itself is unhanged; itmerely identi�es the target of the store operation. This is amore primitive operation than, for example, assignment toan ML ref, although ML assignment ould be implementedusing our primitive plus an extra level of indiretion. Thekey point is that the left hand side of an assignment mustalways be a pointer, and that the new value is plaed in theloation to whih the pointer refers.3.2.1 Type Expansion Versus AssignmentType heking rules for the augmented language are givenin Figure 7. As before, the interesting ase is a globalpointer to loal pointer, suh as x in Figure 8. Suppose thatglobal pointer x is to reeive an assignment, via \x := " 6".The types seem, super�ially, to math: x addresses a loalpointer to int, and " 6 is also a loal pointer to int. Yetthat loal pointer would be meaningless if transported fromproessor 0 aross to proessor 1. Widening " 6 to globalis no solution either, beause the box to whih x points istyped as loal.In general, then, we must forbid assignment to loalpointers aross globals. The loal pointer value an be read,

A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed loal �A ` e : boxed loal �A ` # e : �A ` e : boxed global �A ` # e : expand(�)A ` e : boxed loal �A ` widen e : boxed global �A ` e : �A ` transmit e : expand(�). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ` e : � A ` e0 : � 0A ` e ; e0 : � 0A ` e : boxed loal � A ` e0 : �A ` e := e0 : �A ` e : boxed global �A ` e0 : � robust(�)A ` e := e0 : �Figure 7: Type heking rules II. Rules above the dottedline are idential to those in Figure 3, while those below theline are new. proessor 0 proessor 1x '/ " 5
��
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o6 5Figure 8: Situation preluding assignment.4
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expand(boxed loal �) , boxed global �expand(�) , � otherwiserobust(boxed loal �) , falserobust(�) , true otherwiseFigure 9: Type manipulating funtions II. The expandfuntion is unhanged from Figure 5. The robust prediateis new.J ::= integer literalse ::= J j x j f e j " e j # e j widen e j transmit e je ; e j e := e j he; ei j �1 e j �2 e� ::= int j boxed ! � � j h�; �i! ::= loal j global� ::= valid j invalid� � � valid � invalid � � �boxed ! � � � boxed ! �0 � () � � �0h�1; �2i � h� 01; � 02i () �1 � � 01 ^ �2 � � 02Figure 10: Expressions and types III. Relative to Fig-ure 6, expressions now allow pair reation (h ; i) and sele-tion (�n). Types inlude pairs, and the pointer types nowarry an additional validity quali�er �. A subtyping relationhas been added.subjet to expansion as seen earlier. But it an never beupdated. The ore issue is that loal pointers annot travelaross proessor boundaries, and global pointers use a dif-ferent and inompatible representation. Figure 9 gives therobust prediate that enfores these restritions. A robusttype is one that an safely travel aross a global pointerduring an assignment. Note that assignment aross loalpointers requires no suh test, as it is always safe providingthe soure and destination types math.3.3 System III: Assignable TuplesLastly, we enrih the language with tuples. For simpliity,we only permit pairs; general n-tuples ontribute nothingnovel. The language, type grammars, and subtyping rulesappear in Figure 10. We have added a pair onstrutor h ; i,plus two new operators for deomposing pairs.Given a valid pointer to a pair, the �1 and �2 pair sele-tion operators produe o�set pointers to the �rst and se-ond omponents of the pair. Again, this is more primitivethan the #n reord seletion operator from ML, and the twoshould not be onfused. Assuming that ML reords are al-ways boxed, ML reord seletion roughly orresponds to pairseletion followed by dereferene (# �n). Primitive pair se-letion alone, without dereferene, forms a pointer suitablefor assignment, permitting in-plae mutation of one om-

ponent of a pair while leaving the other unhanged. Theneed for these atypial operators will beome more evidentin Setion 3.3.2.The subtyping relation allows one to weaken pointertypes by promoting ertain � quali�ers from valid toinvalid. This quali�er subsumption is allowed at the toplevel or embedded anywhere within a top level pair. How-ever, one annot hange validity quali�ers below a pointer.If this were permitted, then it would be possible for twopointers with di�erent types to alias the same value, whih isunsound in the presene of assignment. No impliit hangesto the ! quali�er are permitted at all, beause this entailsa hange of representation, and therefore should logiallyprodue a new value.3.3.1 Consistent Representation of PairsAs we have seen, when an isolated loal pointer moves arossproessor boundaries, it must be expanded into a globalpointer. What about moving an unboxed pair ontaininga loal pointer? One option would be to expand the embed-ded pointer as before. Thus, expand(hboxed loal �; inti)ould be de�ned as hboxed global � ; inti. However, thismeans that the expanded pair would have a di�erent rep-resentation than the original pair. This approah is veryunattrative in any language with named reord types (i.e.,almost all languages). Suppose the programmer delaresEntry as a pair hboxed loal � ; inti for some � . Whatname would we use for the expanded pair? Entry is inap-propriate, sine the type has hanged. Do we synthesize anew name? Assume that the value belongs to some anony-mous reord type? Any funtions that manipulate unboxedEntry values annot properly use the expanded pair, beauseits representation (and possibly size and omponent o�sets)will have hanged. Treating Entry as polymorphi in its !quali�ers would entail either generating multiple opies ofode, or else inserting runtime tests wherever polymorphipointers are used. But ode expansion is undesirable andruntime pointer tests are exatly what we wish to avoid.Thus, we wish to ensure that expand never auses a pairto hange representation. Loal pointers within pairs shouldremain loal, even when opied between proessors. Suhpointers no longer represent valid memory addresses andmust never subsequently be used. We add a new validityquali�er, �, to mark when an embedded loal pointer hasbeen invalidated by movement between proessors. Thus,when an unboxed Entry is moved aross proessor bound-aries, its embedded loal pointer is marked as invalid. Butthe seond omponent of the tuple, an embedded integer,remains aessible. An embedded global pointer would like-wise arrive unsathed. Any existing funtion that manipu-lates unboxed Entry values ould still be used, provided thatit only aesses the integer, and never touhes the (now in-valid) loal pointer.Figure 11 presents our �nal set of type heking rules.The updated expand and restrut funtions in Figure 12omplete the piture. A new funtion, pop, is responsiblefor traversing pairs and invalidating any embedded loalpointers. The robust prediate, whih forbids unsound as-signments aross global pointers, has been relaxed slightly.Cross-global assignments to valid loal pointers are forbid-den. But ross-global assignments to invalid loal pointersare allowed: if a loal pointer is already invalid on the reeiv-ing end, one an ertainly replae it with a di�erent invalidloal pointer. The robust and pop funtions have an impor-5
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A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed loal valid �A ` e : boxed loal valid �A ` # e : �A ` e : boxed global valid �A ` # e : expand(�)A ` e : �A ` transmit e : expand(�)A ` e : � A ` e0 : � 0A ` e ; e0 : � 0A ` e : boxed loal valid � A ` e0 : �A ` e := e0 : �A ` e : boxed global valid �A ` e0 : � robust(�)A ` e := e0 : �. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ` e1 : �1 A ` e2 : �2A ` he1; e2i : h�1; �2iA ` e : boxed ! valid h�1; �2iA ` �n e : boxed ! valid �nA ` e : � � � � 0A ` e : � 0Figure 11: Type heking rules III. Rules above the dot-ted line are idential to those in Figure 7, or have beenhanged trivially to support the � quali�er. Rules below theline are new.

expand(boxed loal � �) , boxed global � �expand(h�1; �2i) , hpop(�1); pop(�2)iexpand(�) , � otherwisepop(boxed loal � �) , boxed loal invalid �pop(h�1; �2i) , hpop(�1); pop(�2)ipop(�) , � otherwiserobust(boxed loal valid �) , falserobust(h�1; �2i) , robust(�1) ^ robust(�2)robust(�) , true otherwiseFigure 12: Type manipulating funtions III.tant relationship: robust(�) is true if and only if pop(�) = � .Intuitively, a value an be assigned aross a global pointerif and only if it will not be damaged in transit.3.3.2 Seletion Without DerefereneWe an now demonstrate why it is important to have pair se-letion operators that do not also immediately dereferene.Suppose that we are given a global pointer to h4; hx; 5ii,where x is some embedded loal pointer. We wish to ex-trat x. If seletion is always oupled with dereferene, thenseleting the seond omponent of the pair would produethe unboxed value hx; 5i. There is no global pointer asso-iated with this value; we have arried the loal pointer xaross proessors, and an no longer safely use it. Therefore,the expand and pop funtions will have orretly marked xas invalid.However, if seletion and dereferening are distint oper-ations, we an do better. Given a global pointer to h4; hx; 5ii,seleting the seond omponent will produe a global pointerto hx; 5i. Seleting the �rst omponent of this yields a globalpointer to x. We already know how to use global pointersto loal pointers: dereferening yields a valid global pointerequivalent to widen x.Thus, we �nd that a sequene of seletion operationsmust not dereferene too early. Seletion should be treatedas simple pointer displaement. When extrating a valuedeeply embedded in nested pairs, all seletion displaementsmust be applied �rst, and only then should the �nal o�setpointer be dereferened.4 From Cheking to InfereneThe third system provides address spae management, safepointers, and updatable tuples. This forms a suitable start-ing point for the design of a realisti language for manip-ulating distributed mutable data strutures. However, itis impratial to expet programmers to systematially an-notate programs with loal/global/valid/invalid typequali�ers; it is simply too umbersome and time onsuming(see Setion 5.1).Fortunately, the type quali�ers we have desribed arequite amenable to automati inferene. Figure 13 shows a6
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A ` J : int A(x) = �A ` x : �A(f) = � ! � 0 A ` e : �A ` f e : � 0A ` e : �A ` " e : boxed loal valid �A ` e : boxed ! valid � expand(!; �; � 0)A ` # e : � 0A ` e : � expand(global; �; � 0)A ` transmit e : � 0A ` e : � A ` e0 : � 0A ` e ; e0 : � 0A ` e : boxed ! valid �A ` e0 : � robust(!; �)A ` e := e0 : �A ` e1 : �1 A ` e2 : �2A ` he1; e2i : h�1; �2iA ` e : boxed ! � h�1; �2iA ` �n e : boxed ! � �n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ` e : boxed loal � �A ` e : boxed global � �Figure 13: Type inferene rules. Rules above the dottedline orrespond diretly to type heking rules in Figure 11,while the rule below the line is new.

set of inferene rules diretly derived from the third typesystem. One new rule allows impliit oerion of pointersfrom loal to global. This is allowed at the top level only,both to keep pair types onsistent as well as to avoid thewell-known soundness problems in allowing distint aliasesof mutable data to have di�erent types. For larity of pre-sentation, the rules use several abbreviations:1. Constraints are not expliitly propagated up fromsubexpressions; assume that the omplete onstraintset is the simple union of the sets of onstraints in-dued by all subexpressions.2. A nontrivial rule hypothesis suh ase : boxed ! valid �should be read as an equality onstrainte : �0 �0 = boxed ! valid �3. All onstraint variables are fresh.The inferene rules indue a set of onstraints on un-known quali�ers; for example, the operand of any derefer-ene operator is onstrained to be quali�ed as valid. Fig-ure 14 shows supporting funtions that generate additionalonstraints. Type quali�er inferene requires �nding a solu-tion to the set of all onstraints indued by a program.Some onstraints generated by the pop and robust fun-tions have the following general form:!? = global =) (! = global _ � = invalid)These onditional onstraints arise whenever data rosses a(possibly global) pointer. For example, when derefereninga pointer to a pair, if the pointer being dereferened is global(!? = global), then either a pointer embedded in the pairmust also be global (! = global) or else it must be markedinvalid (� = invalid).In general, solving onditional disjuntive onstraintsis reduible to satis�ability of boolean formulae in 3-onjuntive normal form, an NP-omplete problem. How-ever, we an exploit the partiular struture of this infereneproblem to �nd a solution eÆiently.Our goal is to minimize the number of global point-ers. The onditional disjuntive onstraints may leave uswith a hoie between having a global valid pointer anda loal invalid one. If either would be orret, we willalways prefer loal invalid. Of ourse, if that pointer isrequired to be valid elsewhere, then loal invalid is notan option and we must hoose global valid instead.The onstraints have two important properties. First,the onstraints on types an indue onstraints on quali�ers,but onstraints on quali�ers do not introdue onstraints ontypes. Thus, we an resolve the type onstraints to ob-tain the omplete set of quali�er onstraints. Seond, theonditional quali�er onstraints mention only global/loalquali�ers in the anteedents. This observation suggests thefollowing proedure for seleting a best solution of the on-straints:1. Expand the type onstraints � = � 0 and � � � 0 toobtain the omplete set of quali�er onstraints.2. Solve the unonditional equality and inlusion on-straints on � variables. Set any � variable not requiredto be valid to invalid. At this point all � variablesare resolved.7
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expand(!?; boxed ! � �; boxed !0 �0 � 0) , f!? � !0; ! � !0; � = �0; � = � 0gexpand(!?; h�1; �2i; h� 01; � 02i) , pop(!?; �1; � 01) [ pop(!?; �2; � 02)expand(!?; �; � 0) , f� = � 0g otherwisepop(!?; boxed ! � �; boxed !0 �0 � 0) , f!? = global =) (! = global _ �0 = invalid); ! = !0; � = � 0gpop(!?; h�1; �2i; h� 01; � 02i) , pop(!?; �1; � 01) [ pop(!?; �2; � 02)pop(!?; �; � 0) , f� = � 0g otherwiserobust(!?; boxed ! � �) , f!? = global =) (! = global _ � = invalid)grobust(!?; h�1; �2i) , robust(!?; �1) [ robust(!?; �2)robust(!?; �) , ; otherwiseFigure 14: Constraint generating funtions.3. Remove onditional onstraints of the form !? =global =) (! = global _ invalid = invalid).These are always satis�ed.4. Replae onditional onstraints of the form !? =global =) (! = global _ valid = invalid) by!? � !.5. Resolve the onditional and unonditional onstraintson ! variables. Set any ! variables not required tobe global to loal. Note that the onditional on-straints no longer mention � variables, so this step an-not introdue an inonsisteny. It is easy to show thatthere is a unique solution minimizing the number of !variables resolved to global, omputable in near lineartime [15, 25℄.6. Complete the program by adding a minimal set ofexpliit widen operators wherever the new loal-to-global oerion rule has been used. This is similar toHenglein's minimal ompletions [18℄, but with neitherindued oerions nor projetions, and requiring only alinear-time pass aross the derivation tree.We note that setting all possible variables to global andvalid will always produe one legitimate solution to theonstraints. Thus, languages that require all pointers to beglobal are safe, albeit overly onservative.5 Experimental Implementation5.1 A Pratial Need for Sound InfereneTitanium is an experimental language for high-performaneparallel omputing. Titanium has the syntax and seman-tis of Java, although it ompiles to native mahine oderather than virtual mahine byteodes. Titanium extendsJava with a global address spae, where proesses an ad-dress, read, and write eah other's data [19℄.By default, all referenes in a Titanium program are as-sumed to be global. This makes it easy to build simpleprograms that work. It is also a suitable hoie for arhi-tetures with true shared memory (SMP's), whih Titaniumalso supports. However, when tuning a program for speed,

programmers may seletively delare some referenes as lo-al (e.g. within inner loops). If the programmer knows thata large array is always loal, a loal delaration auses theTitanium ompiler to produe more eÆient ode to traversethe loal array. The ompiler heks expliit loal quali�ersstatially, using rules similar to those presented here. Forexample, if a method expets a loal pointer as a parameter,passing it a global pointer is a simple type error [27℄.This design allows programmer to ignore loality issuesuntil the ode is running orretly and then add loal qual-i�ers to speed things up. However, Titanium does not pro-vide quali�er inferene, and experiene working with appli-ation developers has shown that adding loal quali�ers byhand is not easy. Multidimensional arrays are bewildering;stati type errors are often reported far away from the siteof the o�ending delaration; and the more aggressive oneis at adding loal quali�ers, the harder it is to maintain avalid program in the long run.Maintenane issues beome dominant when dealing withlegay ode. Titanium inorporates a large portion of thestandard Java lass library into its own runtime environ-ment. The omplete ontents of the java.io, java.lang,and java.util pakages are available in Titanium. The Ti-tanium ompiler produes native ode diretly from Sun'sJava soure ode for these pakages. Inorporating the stan-dard Java libraries is very desirable: the libraries representan enormous amount of work that does not need to be re-peated.However, this large body of existing ode was writtenfor Java, not Titanium. The three pakages omprise six-teen thousand lines of soure ode without loal quali�ers.None of this ode uses Titanium's ross-proessor ommu-niation; but in the absene of expliit quali�ers, every vari-able, �eld, and method parameter defaults to a global ref-erene. Methods are assumed to return global referenes,making it even more diÆult for programmers to use loalreferenes in their own ode. Manually annotating this largebody of legay Java ode would be very tedious and wouldneed to be redone with eah new release from Sun. Yetwithout reduing these global referenes to loal, it may beimpossible to ahieve aeptable performane.Pratial loal quali�ation has proven unexpetedlydiÆult for programmers. Furthermore, formally de�ning8
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how loal quali�ation may be used in a sound manner hasbeen an ongoing soure of bugs in the Titanium languagedesign. For these reasons, we have implemented a loalquali�ation inferene engine, LQI, and made it available asan optimization within the Titanium ompiler.5.2 Aommodating Titanium FeaturesTitanium ontains many features not present in the lan-guages presented earlier. However, these may all be han-dled without diÆulty; the ore issues of type expansion andpointer validity an be extended to aommodate a realistilanguage. We briey desribe the highlights.Titanium is objet-oriented, with methods, inheritane,and lass- and interfae-based polymorphism. A method'satual arguments must math its formals; thus, if a methodis observed to reeive a global argument in any ontext, theorresponding formal parameter is onstrained to be globalwithin the method body. Titanium permits impliit oer-ion from loal to global, so a method an reeive a loalargument in one ontext and a global elsewhere. The loalargument is widened at the point of the all.Native methods, whih are implemented by external Code, are treated onservatively. Beause the ompiler hasno aess to the implementation, it is never safe to hangeeither the formal parameter types or the return type of anative method. This onservative approah an be takenin any situation where only partial information is available.For example, while the analysis is urrently whole-program,it ould be made to aommodate separate ompilation byforing onservative analysis at module boundaries.Inheritane simply indues additional onstraints be-tween parent and hild lasses. A sublass is onstrainedto use idential types for any �elds inherited from its par-ent. Interfaes and overridden methods are handled in thesame manner.Arrays are treated similarly to referenes. An array ofreferenes is akin to a pointer to n-tuple of homogeneously-typed pointers. A partiularly triky issue is handling typeasts involving arrays. When an array is impliitly ast toObjet, we forbid hanges to any \forgotten" quali�ers be-low the topmost level of the array type. When an Objetis dynamially ast bak to an array type, we also forbidhanges to any \remembered" quali�ers below the topmostlevel. By holding the quali�ers �xed in both ases, we ensurethat any dynami asts will behave identially in the orig-inal and optimized programs. Otherwise, if quali�ers werehanged in the array delaration but not the expliit ast,or vie versa, dynami ast failures would our where noneexisted in the original program.5.3 Loal Quali�ation Inferene for TitaniumAs implemented in the Titanium ompiler, the LQI opti-mization is slightly less powerful than the inferene systempresented in Setion 4. The initial pass, whih identi�es ref-erenes that must remain valid, is omitted. Instead, it isassumed that all referenes must be valid at all times. Thisis safe, if overly onservative. In some ases, when data isopied aross proessors but never subsequently used, thevalidity assumption may fore referenes to be global whenthey ould have been loal invalid.We have measured the e�etiveness of LQI optimizationon several numerial kernels and appliations. These in-lude:

annon Cannon's algorithm for dense matrix multipliation.We multiply a pair of random 256� 256 matrixes.lu-fat LU fatorization for dense matrixes. We fator a1024 � 1024 element random matrix, partitioned intosixty four 128 � 128 element bloks.sample Sample sort, a distributed sorting algorithm. Wesort 220 thirty two bit integer keys, with 64 keys persample.gsrb The Gauss-Seidel Red Blak algorithm for solving el-lipti partial di�erential equations. We solve a 2048 �128 element problem, partitioned into four 512 � 128element pathes aross 100 full iterations.pps A parallel solver for the Poisson equation with in�nitedomain boundary onditions. We solve a 512 � 512element problem partitioned into four 128�128 elementpathes, with a re�nement ratio of 16 between oarseand �ne grids.In all ases, the programs were run in parallel on fournodes of the Berkeley Network of Workstations (NOW ) [1,11℄. Cross-proessor reads and writes are implemented bysending messages from node to node, with Ative MessagesII providing the lightweight fast messaging substrate [14℄.Table 2 shows our experimental results. Note that forannon and lu-fat, two sets of measurements were taken.The \manual" measurements reet the ode as originallyprodued by the programmer. In both annon and lu-fat,the programmer had already deployed numerous expliitloal quali�ers in an e�ort to speed up the ode. Thus,the \manual" measurements reet the additional speedupavailable from loal quali�ation opportunities that theprogrammer missed, even in these relatively small kernels.The \auto" variants use the same ode but with all expliitloal quali�ations removed. These reet the opposite ex-treme, where a programmer has relied ompletely upon LQI.As one would expet, the manual variants show less rel-ative bene�t than their auto ounterparts. For lu-fat, theprogrammer has already added so many expliit quali�a-tions as to leave little room for further improvement. How-ever, the same programmer missed a few important spotsin annon, even though the entire program is only 180 lineslong. LQI was able to disover and optimize these for a 5.7%net speedup.For both annon and lu-fat, manual annotation plusLQI is just slightly faster than LQI alone. Human program-mers an add expliit asts that reover loal quali�ers,but whih are only orret due to deep properties of theprogram that stati analysis annot reveal. This aÆrms ourhypothesis that the best design ombines seletive manualannotation with aggressive, sound inferene.The measurements as a whole show that improvementvaries widely from program to program. In a sense, LQIidenti�es the portion of a alulation that takes plae lo-ally, and optimizes that to run using fast loal pointers.Thus, the bene�t to be gained is diretly dependent uponthe loality of the underlying algorithms. A program thatgenuinely uses lots of ross-proessor data will harbor fewopportunities for loal quali�ation. Conversely, an algo-rithm that has been spei�ally designed for salable dis-tributed operation will perform most work loally, and onlyommuniate very rarely. Suh algorithms will show largerspeedups from LQI, and the relative speedup will beome9
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E�et on Speed E�et on Code SizeBenhmark Na��ve LQI Improvement Na��ve LQI Improvementannon manual 53:4 se 50:3 se 5:7% 43:5 MB 23:4 MB 46:2%annon auto 58:1 51:3 13:2% 43:0 23:6 45:2%lu-fat manual 131:4 130:1 < 1:0% 78:1 44:6 42:9%lu-fat auto 227:1 131:3 42:2% 87:4 44:9 48:7%sample 29:2 21:4 26:6% 40:5 20:3 49:8%gsrb 16:0 15:7 1:9% 99:1 64:4 35:0%pps 92:2 40:3 56:3% 545:0 309:8 43:2%Table 2: Titanium benhmark performane.greater when working on inreasingly large problems. Thisis partiularly evident in pps, a fairly new algorithm thatis spei�ally designed for salable distributed operation. Itperforms relatively more loal alulations than gsrb, but isthereby able to greatly redue the amount of ross-proessorommuniation [3℄. Beause ommuniation is so ostly, thisgives muh better performane in general, and meshes par-tiularly well with LQI, for an impressive speedup. Theanedotal experiene of programmer who wrote pps is illu-minating. When asked if he had previously put in many ex-pliit loal quali�ers, he replied \Yes, but apparently notanywhere that it mattered." LQI's analysis is more thor-ough and 56.3% more e�etive.The primary onern of most Titanium programmers isexeution speed. However, LQI also makes ode smaller.As Titanium is implemented on the NOW, loal pointersrequire many fewer instrutions to use. Table 2 shows thatLQI makes the benhmarks' ode segments 35% to 50%smaller. These sizes exlude ode for the standard Javalasses, like String or Math. If the standard lasses are in-luded as well, the overall redution is smaller, from 13% to18% for a omplete exeutable.6 Related WorkNearly one hundred distributed programming languageswere identi�ed ten years ago [2℄, and many more have ap-peared sine. We highlight some representative examplesof approahes previously taken to the loal/global pointerproblem.Olden adds parallelism to C, fousing on dynami stru-tures augmented with ompiler-direted software ahingand migration [8, 9, 24℄. All Olden pointers are global, so itis never possible to see an invalid loal pointer from anotherproessor's address spae. However, pointer operations re-quire four extra instrutions to test the proessor ID anddeode the mahine address. Data ow analyses an elim-inate some redundant heks, but address deoding alwaysadds one instrution of overhead. The inferene desribed inthis paper ould omplement these analyses, using a faster(unenoded) representation for those pointers that are stat-ially guaranteed to be loal.Emerald also fouses on �ne-grained objet mobility [20℄.While loal and global are not distinguished at the sourelevel, seleted objet �elds may be delared as attahed. Be-ause an objet and its transitively attahed �elds alwayslive in the same address spae, the ompiler an use fastloal addresses to implement attahed �elds. This is a safealternative to the tehniques presented here, but may re-quire more data motion to keep attahed �elds oloatedas objets migrate. Java remote method invoation (RMI)

uses a similar transitive losure for objet serialization.Cid [23℄, Split-C, and Titanium expliitly distinguish lo-al and global in the soure language. Cid uses a single typefor all global pointers, the distributed equivalent of void *.Split-C assumes all pointers loal unless delared otherwise,while Titanium referenes default to global. Cid and Split-Cmake little e�ort to enfore soundness; while this is onsis-tent with C's low-level approah, the diÆulty of distributeddebugging ompounds the standard issue of wild pointers.Titanium attempts to be as safe Java, and does address someof the issues highlighted in Setion 3. However, it does notdo so onsistently or ompletely, and one an easily raft un-sound expressions. Those remaining holes an now be losedin light of this researh.7 Conlusions and Future WorkDistributed omputing environments have distint notionsof loal and remote memory. However, expliitly distin-guishing between pointer types reates several opportuni-ties for unsoundness. We have desribed a suite of typesystems that larify these problems and demonstrate howthey an be avoided. A simple, asymptotially eÆient typeinferene system an automatially insert an optimal set ofquali�ers, reduing the burden on the programmer. Exper-iments with the Titanium language show that inferene angreatly improve performane, partiularly for odes spei�-ally designed for salable distributed exeution.The systems presented here ould be enhaned in threeimportant ways. First, the assumption of a two-level mem-ory ould be generalized to n levels of partitioned addressspaes. This may beome important as simple distributeduniproessors give way to lusters of SMP's, lusters of lus-ters, and other deep parallel hierarhies. Seond, the modelshould be extended to inlude mobile ode, an area of grow-ing interest. A simple approah may be to require that onlyrobust free variables appear in any mobile losure, but morestudy is needed. Finally, polymorphi analysis of funtionsould be bene�ial. For example, this would let Titanium'sLQI automatially produe both loal and global variantsof standard ontainer lasses like Vetor or Hashtable, forpotentially larger improvements to performane.Referenes[1℄ A. C. Arpai-Dusseau, R. H. Arpai-Dusseau, D. E.Culler, J. M. Hellerstein, and D. A. Patterson. Sear-ing for the sorting reord: Experienes in tuning NOW-sort. In Symposium on Parallel and Distributed Tools,pages 124{133, Welhes, Oregon, Aug. 1998. Assoia-tion for Computing Mahinery.10
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A Operational Semantis and SoundnessIn this appendix we prove that the type heking system pre-sented in Setion 3.3 is sound with respet to an operationalsemantis. We fous on the sequential subset of the lan-guage, whih inludes everything exept transmit expres-sions. Beause the semanti problems with loal and globalpointers are the representation and movement of pointersbetween address spaes, dealing with onurreny ompli-ates the semantis while also obsuring the ore issues. Thelanguage subset we work with is:e ::= J j x j f e j " e j # e j widen e je1 ; e2 j e1 := e2 j he1; e2i j �1 e j �2 eFurthermore, we restrit primitive funtions to be mappingsfrom integers to integers. This simpli�es the proof withouthiding any ore issues.A.1 Semanti DomainsWe use the semanti domains given in Figure 15. The treat-ment of stored pairs is unusual and is explained below.M the set of mahinesA the set of loal addressesId the set of identi�ersT the set of all typesG = M �A global addressesV = J+A+G+ V � V valuesSV = J+A+G+A�A values that an be storedStore = G! SVFun = J! JEnv = Id! Fun+ VFigure 15: Semanti domains.We use the following onventions for naming elements ofthe semanti domains.m;m0;m0; : : : 2M a mahinev; v0; v0; : : : 2 V a valuesv; sv0; sv0; : : : 2 SV a storable valueS; S0; S0; : : : 2 Store a storeE 2 Env the environmente; e0; e0; : : : a soure expressioni; i0; i0; : : : 2 J an integerg; g0; g0; : : : 2 G a global pointera; a0; a0; : : : 2 A a loal pointerIn the operational semantis, the use of i, a, or g in thehypothesis should be read as a onstraint, not a omment.That is, a hypothesis e ! i means that e must evaluate toan integer for the rule to be appliable.We write global addresses as a pair hm;ai of mahineand loal address. Global addresses an be distinguished

from pair values hv1; v2i by ontext, as mahines annot bea omponent of pairs.A store is a �nite funtion from global addresses to val-ues. When a value is reated a new loation in the storemust be alloated. The funtionnew : Store�M ! Atakes a store and a mahine m and returns a fresh loaladdress. We also use a shorthandnewn(m;S) = ha1; : : : ; anito simultaneously obtain n distint fresh addresses in a loalmemory. By \fresh" we mean that new satis�es:new(m;S) = a =) a =2 dom(�a:S(hm;ai))In other words, the new address is not already in use onmahine m.An unusual aspet of the domains is the treatment ofpairs. Unboxed pairs are treated as values, but only pairs ofaddresses are plaed in the store. Beause the operations �1and �2 take the addresses of pair omponents, and beausethese addresses are then �rst-lass values, we must modelthe loation in the store of the omponents of the pair aswell as the pair itself. This is done most diretly by simplystoring the two omponents of the pair at di�erent addresses,rather than more usual solution of representing the entirepair value with a single address. To maintain the knowledgethat these two omponents represent a pair we store the pairof addresses at the address of the pair itself.For example, onsider an unboxed pair onsisting of twointegers h5; 6i. Taking the address "h5; 6i fores the pair tobe plaed in the store S. Three new loations on the loalmahine m are alloated to store the pair:S(hm;a1i) = ha2; a3iS(hm;a2i) = 5S(hm;a3i) = 6The value of "h5; 6i is the pair address a1. Seleting theaddress of the �rst �eld �1 "h5; 6i has the value a2.Nested pair values are stored reursively when boxed.Thus the expression "hh5; 6i; 7i alloates �ve new loationsin the loal store for the three integers and two pairs:S(hm;a0i) = ha1; a4iS(hm;a1i) = ha2; a3iS(hm;a2i) = 5S(hm;a3i) = 6S(hm;a4i) = 7In pratial language implementations only the \leaf" values5, 6, and 7 are stored and the knowledge of the grouping ofthe addresses into pairs is maintained impliitly inside theompiler. The stored pair values are the semanti represen-tation of this ompiler knowledge.Unboxing a nested pair is the inverse of boxing a pair:any stored address pairs are traversed reursively to rereatethe unboxed value. In the example just given # "hh5; 6i; 7i isthe value hh5; 6i; 7i.12
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A.2 Operational SemantisOperational rules have the form:m;S0; E ` e! v; S1whih should be read \on a given mahine m in store S0and environment E, the expression e evaluates to the valuev and produes a new store S1."The rules for integer, variable, and funtion appliationexpressions are simple.m;S;E ` i! i; S E(x) = v 2 Vm; S;E ` x! v; Sm; S0; E ` e! i; S1E(f) = � 2 Fun �(i) = i0m;S0; E ` f e! i0; S1The rules for referening and dereferening values are themost elaborate. We need a number of auxiliary funtions.Let a � hb; i = ha; b; i be a tuple append operator. Appendmay also be applied on the right hb; i � a = hb; ; ai and tosets of tuples: a �B = fa � b j b 2 BgA path is a tuple with elements appearing in an order de-sribed by the regular expression ($ j %)?sv. That is, a pathonsists of a sequene of $ and %, exept for the last ele-ment whih is a storable value. A path desribes a sequeneof seletions within a pair (taking either the left or rightomponent) to reah a storable value. We write t; t0; t0; : : :to denote paths.A pure path is a tuple with elements appearing in an or-der desribed bu the regular expression ($ j %)?. We writep; p0; p0; : : : to denote pure paths. Figure 16 de�nes a num-ber of funtions on paths and values.Taking the address of any value but a pair simply boxesthe value by alloating a loal address on the urrent pro-essor and storing the value at that address. As desribedabove, the omponents of pairs are reursively boxed.m;S0; E ` e! v; S1Paths(v) = fp1; : : : ; pl; pl+1 � svl+1; : : : ; pn � svng where p1 = hinewn(m;S1) = fa1; : : : ; angsvi = haj ; aki where pi� $= pj and pi� %= pk, for 1 � i � lS2 = S1[hm; a1i  sv1; : : : ; hm; ani  svn℄m;S0; E ` " e! a1; S2For dereferenes there are two ases. For a dereferene ofa loal pointer, we use the auxiliary funtion Value de�nedin Figure 16 to unbox the value. For a dereferene of a globalpointer we use auxiliary funtion WideValue, whih widenswidens any loal pointer appearing at the top level but isotherwise idential to Value.m;S0; E ` e! a; S1m;S0; E ` # e! Value(S1; hm;ai); S1m;S0; E ` e! g; S1m;S0; E ` # e!WideValue(S1; g); S1

The rules for widening, sequening, and pairing arestraightforward. m;S0; E ` e! a; S1m;S0; E ` widen e! hm; ai; S1m;S0; E ` e1 ! v1; S1m;S1; E ` e2 ! v2; S2m;S0; E ` e1 ; e2 ! v2; S2m;S0; E ` e1 ! v1; S1m;S1; E ` e2 ! v2; S2m;S0; E ` he1; e2i ! hv1; v2i; S2The rule for assignment is ompliated by the semantisof assigning into pairs. Assume a is a boxed loal pointer toa pair of integers. Then the assignment a :=h1; 2i overwritesthe two integers of the pair in the store with the integers 1and 2. This semantis orresponds diretly to the strutureassignment primitive in the C programming language. Theauxiliary funtions LeafAddresses and LeafPaths in Figure 16provide the mehanism for mathing addresses with the val-ues to be assigned. Note that in the ase where S(hm;ai)and v are not pairs, the sets of leaf addresses and leaf valuesare just fhhm; aiig and fhvig respetively.m;S0; E ` e1 ! a; S1m;S1; E ` e2 ! v; S2LeafAddresses(S2; hm; ai) = fp1 � g1; : : : ; pn � gngLeafPaths(v) = fp1 � sv1; : : : ; pn � svngS3 = S2[g1  sv1; : : : ; gn  svn℄m;S0; E ` e1 := e2 ! v; S3m;S0; E ` e1 ! g; S1m;S1; E ` e2 ! v; S2LeafAddresses(S2; g) = fp1 � g1; : : : ; pn � gngLeafPaths(v) = fp1 � sv1; : : : ; pn � svngS3 = S2[g1  sv1; : : : ; gn  svn℄m;S0; E ` e1 := e2 ! v; S3The �nal four rules implement the �n operators, whihreturn the addresses of pair omponents.m;S0; E ` e! a; S1 S1(hm;ai) = ha1; a2im;S0; E ` �1 e! a1; S1m;S0; E ` e! a; S1 S1(hm;ai) = ha1; a2im;S0; E ` �2 e! a2; S1m;S0; E ` e! hm0; ai; S1 S1(hm0; ai) = ha1; a2im;S0; E ` �1 e! hm0; a1i; S1m;S0; E ` e! hm0; ai; S1 S1(hm0; ai) = ha1; a2im;S0; E ` �2 e! hm0; a2i; S113
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Paths(v) = (fhig [ ($ �Paths(v1)) [ (% �Paths(v2)) if v = hv1; v2ifhvig otherwiseLeafPaths(v) = fx j x 2 Paths(v) ^ x = p � svgLeafAddresses(S; hm; ai) = 8><>:($ �LeafAddresses(S; hm; a1i)) if S(hm; ai) = ha1; a2i[ (% �LeafAddresses(S; hm; a2i))fhhm; aiig otherwiseValue(S; hm; ai) = 8><>:hValue(S; hm;S(hm; a1i)i); if S(hm; ai) = ha1; a2iValue(S; hm;S(hm; a2i)i)iS(hm;ai) otherwiseWideValue(S; hm; ai) = (hm; a0i if S(hm;ai) = a0Value(S; hm;ai) otherwiseFigure 16: Auxiliary funtions for boxing, unboxing, and assignment.A.3 SoundnessBefore we an prove type soundness we need to state whatrepresentation we expet the values of types to have. Fig-ure 17 de�nes a prediate Consistent that reursively om-pares a type with a value and a store to hek that thevalue mathes requirements of the type. We say that astore S on mahine m is onsistent with value v and type� if Consistent(m;S; hv; �i) is true. We extend onsistenyto apply to sets of values and types as well. If U is a setof value/type pairs, then Consistent(m;S; U) if and only ifConsistent(m;S; u) for all u 2 U .There is a another soundness issue we must aount for.Our language allows pointer aliasing, and the language willbe unsound if stored pointer values an be given di�erenttypes by di�erent aliases. In partiular,if x : boxed loal valid boxed loal invalid �and y : boxed loal valid boxed loal valid �and x and y happen to refer to the same pointer, then thetype system will permit an assignment of an invalid pointerinto x, thereby giving y a value that disagrees with its type.The Consistent prediate annot detet this situation; tohek this it is neessary to ompare all the di�erent typingsof eah memory address through all of its aliases to ensurethey agree.The funtion StoreType in Figure 18 aptures the neededproperty. A StoreType maps mutable loations to types, ?,or >. The ordering of elements is ?� � � >, with all types �being inomparable. The least upper bound of two elementsis the smallest element that is � to both. The least upperbound of two funtions is de�ned point-wise:(f t f 0)(x) = f(x) t f 0(x)If a store typing st has the property that st(g) = >, thenthe loation g is typed di�erently by two or more aliases ofthe loation; in this ase we say the store typing st is notuniform. If there is no g suh that st(g) = > then all of thealiases of all mutable loations agree on the types of thoseloations: the store typing is uniform. Prediate Uniformin Figure 18 formalizes this notion.Data that is immutable need not have the same typing forevery alias. StoreType does not require the top-level pointer

enountered in its traversal of a value to have a uniform vieweverywhere. This pointer is not itself mutable, only the datait points to is mutable.Finally, the full notion of soundness we need simulta-neously on�rms that the exeution and type environmentsalso agree. For this purpose it is useful to ombine the twoenvironments pairwise, mathing eah variable's value withits orresponding type:E on A = fhE(x); A(x)i 2 U j x 2 dom(E) \ dom(A)gFor the soundness proof we require that the exeution andtype environments agree from the outset; that is, dom(E) =dom(A).Beause we do not have any iteration onstruts in oursmall language, all omputations are terminating. We anuse this fat to sidestep the usual issues with showing typesoundness even for in�nite omputations. We simply showthat if an expression has any type then omputation nevergoes wrong, provided the omputation is performed in anenvironment onsistent with the typing assumptions.A.4 Main Soundness TheoremTheorem 1. Let A ` e : � . Assume thatm is a mahine,S is a store, and E is an environment suh that dom(E) =dom(A). If initiallyUniform(StoreType(m;S;E on A))then m;S;E ` e! v; S0^ Consistent(m;S0; (E on A) [ fhv; �ig)i.e., omputation sueeds and ends in a state where allvalues have types onsistent with the store.The proof is omitted from this summary, but theinterested reader an �nd the omplete version at<http://www.s.berkeley.edu/Researh/Projets/titanium/popl-00/>.14
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U = V � TU 2 2Uu; u0; u0; : : : 2 UConsistent : M � Store� U ! booleanConsistent(m;S; hi; inti) () trueConsistent(m;S; ha; boxed loal invalid �i) () trueConsistent(m;S; hg; boxed global invalid �i) () trueConsistent(m;S; hhv1; v2i; h�1 ; �2ii) () Consistent(m; S; hv1; �1i)^ Consistent(m; S; hv2; �2i)Consistent(m;S; ha; boxed loal valid inti) () S(hm; ai) is de�ned^ Consistent(m; S; hS(hm; ai); inti)Consistent(m;S; ha; boxed loal valid boxed ! � �i) () S(hm; ai) is de�ned^ Consistent(m; S; hS(hm; ai); boxed ! � �i)Consistent(m;S; ha; boxed loal valid h�1 ; �2ii) () S(hm; ai) = ha1; a2i^ Consistent(m; S; ha1; boxed loal valid �1i)^ Consistent(m; S; ha2; boxed loal valid �2i)Consistent(m;S; hhm0 ; ai; boxed global valid inti) () S(hm0; ai) is de�ned^ Consistent(m0 ; S; hS(hm0 ; ai); inti)Consistent(m; S; hhm0; ai; boxed global valid boxed ! � �i) () S(hm0; ai) is de�ned^ Consistent(m0 ; S; hS(hm0 ; ai); boxed ! � �i)Consistent(m;S; hhm0; ai; boxed global valid h�1 ; �2ii) () S(hm0; ai) = ha1; a2i^ Consistent(m; S; hhm0; a1i; boxed global valid �1i)^ Consistent(m; S; hhm0; a2i; boxed global valid �2i)Consistent(m;S;U) () û2U Consistent(m; S; u)Figure 17: Consistent stores.
15
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ST = G! (�+ ? +>)StoreType : M � Store� U ! STStoreType(m;S; hi; inti) = �x: ?StoreType(m;S; ha; boxed loal invalid �i) = �x: ?StoreType(m;S; hhm0 ; ai; boxed global invalid �i) = �x: ?StoreType(m;S; hhv1; v2i; h�1 ; �2ii) = StoreType(m;S; hv1; �1i)t StoreType(m;S; hv2; �2i)StoreType(m;S; ha; boxed loal valid inti) = �x: ? [hm; ai  int℄t StoreType(m;S; hS(hm; ai); inti)StoreType(m;S; ha; boxed loal valid boxed ! � �i) = �x: ? [hm; ai  boxed ! � � ℄t StoreType(m;S; hS(hm; ai); boxed ! � �i)StoreType(m;S; ha; boxed loal valid h�1 ; �2ii) = �x: ? [hm; ai  h�1; �2i℄t StoreType(m;S; ha1; boxed loal valid �1i)t StoreType(m;S; ha2; boxed loal valid �2i)where S(hm; ai) = ha1; a2iStoreType(m;S; hhm0 ; ai; boxed global valid inti) = �x: ? [hm0; ai  int℄t StoreType(m0; S; hS(hm0; ai); inti)StoreType(m; S; hhm0; ai; boxed global valid boxed ! � �i) = �x: ? [hm0; ai  boxed ! � � ℄t StoreType(m0; S; hS(hm0; ai); boxed ! � �i)StoreType(m;S; hhm0; ai; boxed global valid h�1 ; �2ii) = �x: ? [hm0; ai  h�1; �2i℄t StoreType(m;S; hhm0 ; a1i; boxed global valid �1i)t StoreType(m;S; hhm0 ; a2i; boxed global valid �2i)where S(hm0 ; ai) = ha1 ; a2iStoreType(m;S;U) = Gu2U StoreType(m;S; u)Uniform : ST ! booleanUniform(st) () �g:st(g) = >Figure 18: Uniform store typings.
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